Western Association of Map Libraries

"... to encourage high standards in every phase of organization and administration of map libraries..."
The Western Association of Map Libraries is an independent association of persons. The Membership has defined its Principal Region for meeting locations as: the Provinces of Alberta and British Columbia, and the States of Alaska, Arizona, California, Colorado, Hawaii, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington and Wyoming.

Membership in WAML is open to any individual interested in furthering the purpose of the Association, which is to encourage high standards in every phase of the organization and administration of map libraries. Membership includes receipt of all issues of the Information Bulletin and Electronic News & Notes (if an email address is provided), mail announcements of WAML meetings, voting privileges and receipt of WAML ballots.

Dues are US$30 per year and all memberships begin July 1. You may join any time of the year by sending your name, address, phone, fax, email address and US$30 to the WAML Treasurer at the address below. Make checks payable to “WAML” or the “Western Association of Map Libraries.” Lifetime membership is open to any individual for a one-time payment of US$500. In addition to all membership privileges listed above, Lifetime Members also receive a copy of each volume published in the WAML Occasional Paper series. For more information about WAML, its purpose, meetings and membership, see the WAML Web site at http://www.waml.org or contact an officer listed below.

WAML and its Information Bulletin operate on a membership/volume-year basis. Subscriptions begin July 1 and end on June 30 the following year. Mid-year joiners/subscribers will receive back issues for that year. Back issues of the Information Bulletin are available for US$10/volume, or portion thereof, from the Subscription Manager. Subscriptions to the Information Bulletin are US$35 per volume year. The Information Bulletin is issued three times each year: Issue #1 in November, Issue #2 in March, and Issue #3 in July. In addition to the subscription cost, US$3 is charged for postage to Canada and US$10 is charged for mailing to countries outside of the US and Canada.

WAML Executive Board (July 1, 2002 - June 30, 2003)

President
Richard A. Spohn
3122 River Branch Circle
Kissimmee, FL 34741-7601
ras@ao.net

Vice President/President Elect
Sue Haffner
CSU-Fresno Library
5200 N. Barton Ave., MS ML34
Fresno, CA 93740-8014
(559) 278-2405
Fax (559) 278-6952
sue_haffner@csufresno.edu

Secretary
Andrew Nicholson
Map & Aerial Photography Collection
Documents Center
University of Oregon
Knight Library
Eugene, OR 97403-1299
anichols@darkwing.uoregon.edu

Treasurer
Cynthia Jahns
Head, Maps Unit
Science & Engineering Library
University of California-Santa Cruz
1156 High St.
Santa Cruz, CA 95064-1078
(831) 459-3187
Fax: (831) 459-4187
cjahns@cats.ucsc.edu

Past President
Christopher J.J. Thiry
Map Librarian, Arthur Lakes Library
Colorado School of Mines
PO Box 4029
Golden, CO 80401-0029
(303) 273-3697
Fax (303) 273-3199
cthiry@mines.edu

Business Manager
Julie Hoff
WAML Book & Sales Manager
Map Collection
Arizona State Library
1700 West Washington
Phoenix, AZ 85007
(602) 542-4343
Fax (602) 542-4400

Subscription Manager
Jim O’Donnell
Geology Library 100-23
California Institute of Technology
Pasadena, CA 91125
wamlsubsmgr@yahoo.com
Western Association of Map Libraries

Volume 34, No. 2

INFORMATION BULLETIN

March 2003

Table of Contents

WAML Business .. 62

Features

A First Hand Account of the Columbia Space Shuttle Response and Recovery by P.R. Blackwell ... 66
Elizabeth Winroth Memoriam by Sue Scyl and Linda Zellner .. 70
Chasing Mayflies: Archiving Spatial Data by Linda Zellner .. 71

Reviews of Atlases, Books and Digital Resources edited by Kathy Rankin ... 76

Historical Atlas of the North Pacific Ocean: Maps of Discovery and Scientific Exploration 1500 – 2000 reviewed by Ronald Whistance-Smith;
Cartographic Treasures of the Newberry Library: the Newberry Library, October 10, 2001-January 19, 2002 reviewed by Stephen W. Rogers;
Seeing Through Maps: The Power of Images to Shape Our World View reviewed by Penelope Whitten;
Undersea with GIS reviewed by David Deckelbaum;
A Thread Across the Ocean: The Historic Story of the Transatlantic Cable reviewed by Peter L. Kraus;
Past Time, Past Place: GIS for History reviewed by Julie Sweetkind-Singer;
A Good and Wise Measure: The Search for the Canadian-American Boundary, 1783-1842 reviewed by Peter L. Kraus;
Open Access: GIS in e-Government reviewed by Christine Kollen

New Mapping of Western North America compiled by Ken Rockwell .. 85

News of Note

Benchmarks .. 91
Canadian News .. 93
Cataloging News .. 94
Conferences & Classes ... 95
Employment ... 96
General News .. 97
Internet Resources .. 98
Periodical Articles .. 100
US Federal, State and Local Government News ... 103

US ISSN 0049-7282 © 2003 by The Western Association of Map Libraries LC #72-625238
Instructions for Authors

The Western Association of Map Libraries Information Bulletin publishes feature articles, photoessays, association business and selected news and notes related to all forms of cartographic information, including maps, spatial data, GIS, and all aspects of map librarianship. Articles are invited that will address the interests of the publications' audience. Individuals are encouraged to submit unsolicited articles for consideration.

Length: Articles should be submitted to the Information Bulletin editor via email or on disk in either Microsoft Word or ASCII text format. Submissions should be accompanied by a printed copy which is no more than 20 double-spaced printed pages. Do not include any special formatting, such as page breaks and indentations in the article. Paragraphs should be separated by two line breaks. When submitting articles on disk, please note the author(s) name(s), the word processing program, a brief title of your article and the file name(s) on the disk. Cartographic information is, for the most part, a visual medium, so illustrations should be included whenever possible. Note the approximate location of illustrations by inserting a separate sentence in the text of the article:

Insert Figure 1 Here

The Production Editor will place the image based on the text flow and page layout of the article.

Illustrations: Illustrations and graphic material should be submitted in scanner-ready or computer-readable form (gif, jpg or tiff). If it is absolutely impossible to submit scanned images, photographic prints and photocopies may be submitted. All photocopies, even copies of black and white illustrations, should be copied on a color copier machine, as they have a higher resolution than standard black and white copiers. Tables should be word processed and saved as a separate file on the disk.

References: References should be included in the text in Author Date format (Jones, 1998). References Cited should be listed at the end of the article in a separate section titled REFERENCES CITED. Citations should be listed alphabetically and written in Author Date style. References to web sites should be written:

Author's Last Name, First Name, Month, Day & Year Updated. Title of the web site. <URL> (Date site accessed).

Author Information: The author should include a brief title before the text of the article. Information about the author(s) should also be included: author's name, position, address and e-mail address, if available.

Editing: The editors reserve the right to make minor copy-editing changes.

Acceptance of manuscripts: The WAML Information Bulletin editors reserve the right to accept or reject articles.

Book, Atlas & Media Reviews

Atlas and book reviews and reviews of digital cartographic products, software and data are welcome. Contact the Atlas & Book Review Editor, Kathy Rankin or the IB Editor. For more information on atlas and book reviews, see the instructions for reviewers in the Book Review section of the Information Bulletin.
Contribution Guidelines for Electronic News and Notes

Electronic News and Notes contains information on: Benchmarks (major events related to people or Map Libraries, specifically map library events in or about the principal region), Canadian News, Cataloging News, Conferences and Classes, Digital Spatial Data, Employment, General News, Internet Resources, New Publications and cartographic materials, Periodical Articles and news from US Federal, State and Local Government agencies related to map librarianship and the principal region. Submit items to the News and Notes Editor or the appropriate State or Province editor at any time for inclusion in WAML Electronic News and Notes.

E-N & N is a monthly publication that is compiled and posted on the WAML web site at http://www.waml.org. The E-N & N Editor appreciates receiving contributions via e-mail, but will accept regular mail as well. Please flag time-sensitive items in the subject line. Back issues of E-N & N can be viewed on the WAML Web site. Selected E-N & N items also appear in the Information Bulletin. Potential sources for news items include: communication with colleagues, listservs (please acknowledge original author and list), Web sites (use search engines to search for maps, atlases, cartography, geospatial data, GIS and your state, county or city), automated notification services, journals and newspapers, vendor publisher and agency catalogs, newsletters and conference announcements.

E-N & N includes the regular feature “New Mapping of Western North America.” Submit citations for new print and digital maps and atlases of the western United States and Canadian Provinces to Ken Rockwell, New Mapping Editor. Include ordering information if possible.

Information Bulletin and Electronic News & Notes
EDITORIAL STAFF

Electronic News & Notes Editor
Linda Zellmer
Head, Geology Library
Indiana University Libraries
1001 East Tenth Street, Room 601
Bloomington, Indiana 47405-1405
(812) 855-7170
Fax (812) 855-6614
lzellmer@indiana.edu

Atlas & Book Review Editor
Katherine L. Rankin
3189 Brazos St.
Las Vegas, NV 89109-3204
(702) 895-3062
Fax (702) 895-1078
krankin@nevada.edu

New Mapping of Western North America Editor
Ken Rockwell
Marriott Library
University of Utah
Salt Lake City, UT 84103
krockwel@library.utah.edu

Information Bulletin Editor
Lisa Sweeney
Editor, WAML Information Bulletin
GIS/Data Center
Fondren Library MS-44
Rice University
6100 Main Street
Houston, Texas 77005
Phone: (713) 348-5691
Fax: (713) 348-5902
sweeney@rice.edu

Photo Essay Editor
Ross Togashi
Map Collection
University of Hawaii Libraries
2550 The Mall
Honolulu, HI 96822
(808) 956-6199
Fax (808) 956-5968
rtogashi@hawaii.edu

Editorial Advisor and
Micrographics/Technology Editor
Larry Cruse
University Library, C075P
UC San Diego
La Jolla, CA 92093-0175
(619) 534-1248
Fax (619) 534-7548
Larry_Cruse@UCSDLIBRARY@ucsd.edu
State and Province Editors

State and Province Editors accept contributions for their state or province at any time and forward them for publication. State and Province Editors have volunteered to be especially vigilant for news, notes and ideas for features. State and Province Editors will accept contributions at any time for their state or province and will forward them for publication.

Alaska Editor
John Kawula
Government Documents & Map Librarian
Rasmuson Library
University of Alaska
Fairbanks, AK 99775-6800
stjdavid@uaf.edu

California Editor
Phil Hoehn
Librarian
David Rumsey Collection
51 Levant St.
San Francisco, CA 94114-1409
(415) 431-1423
philhoehn@juno.com

Oregon Editor
Andrew Nicholson
Map & Aerial Photography Collection
Documents Center
University of Oregon
Knight Library
Eugene, OR 97403-1299
anichols@darkwing.uoregon.edu

Alberta Editor
Ron Whistance-Smith
Map Collection, Geography Dept.
University of Alberta
Edmonton, Alberta T6G 2H4 Canada
rwhistance@compusmart.ab.ca

Colorado Editor
Christopher Thiry
Map Librarian
Arthor Lakes Library
Colorado School of Mines
Golden, CO 80401-1887
(303) 273-3697
Fax (303) 273-3199
cthiry@mines.edu

Utah Editor
Peter L. Kraus
University of Utah
J. Willard Marriott Library
Government Documents
2955 S 1500 E
Salt Lake City, UT 84112
801-581-8394 (work)
801-585-3464 (fax)

Arizona Editor
Dale Steele
Arizona Dept of Transportation

Hawaii/Pacific Rim Editor
Riley Moffat
Division of Learning Resources
Brigham Young University
Box 1966
Laie, HI 96762
(808) 293-3850
Fax (808) 293-3877
moffat@byu.edu

Washington State Editor
Matthew Parsons
Assistant Map Librarian
University of Washington Libraries
Map Collection and Cartographic Information Services Unit
Box 352900, Seattle WA 98195
206.543.9392
parsonsm@u.washington.edu

Arizona Editor
Dale Steele
Arizona Dept of Transportation

British Columbia Editor
Tim Ross
Map Librarian
University of British Columbia Library
1956 Main Mall
Vancouver, BC V6T 1Z1
(604) 822-6191
Voice (604) 822-2231
Fax (604) 822-3335
timross@unixg.ubc.ca

Hawaii/Pacific Rim Editor
Riley Moffat
Division of Learning Resources
Brigham Young University
Box 1966
Laie, HI 96762
(808) 293-3850
Fax (808) 293-3877
moffat@byu.edu

Oregon Editor
Andrew Nicholson
Map & Aerial Photography Collection
Documents Center
University of Oregon
Knight Library
Eugene, OR 97403-1299
anichols@darkwing.uoregon.edu

Idaho Editor - Vacant
Montana Editor - Vacant
New Mexico Editor - Vacant
Wyoming Editor - Vacant

Editor’s Message

In my first edition as WAML IB editor I have made a few minor formatting changes and have brought to you a first hand account of the Columbia Space Shuttle Response and Recovery. I hope you enjoy reading this edition of the IB and still find all the helpful information you have come to expect from the IB. I look forward to hearing feedback from WAML IB subscribers and to receiving future contributions to the WAML IB. My special thanks goes out to Kathy Rankin, Ken Rockwell and especially Linda Zellmer for their continuing loyal contributions to the WAML IB.

-Lisa
WAML IB Editor
 Lists for 2002/03 Membership Year
Committees and Representatives

Executive Board
President: Richard Spohn
Vice President/President Elect:
Sue Haffner
Secretary: Andrew Nicholson
Treasurer: Cynthia Jahns
Past President: Christopher J.J. Thiry

Appointees
Archivist - Julie Sweetkind, (2000-)
Business Manager -
 Julie Hoff (2002-)
Subscription Manager -
 Jim O’Donnell, (1997-)
Web Manager –
 Linda Zellmer (1999-)

Membership/Hospitality Committee
Carol Doyle (2002-)
Yvonne Wilson (2002-)

Nominating Committee
Christopher J.J. Thiry (2002-)
Need additional members

Publications Advisory Committee (PAC)
Phil Hoehn (1999-)
David Deckelbaum (1999-)

Ex Officio:
Linda Zellmer, I/B Managing Editor
(2000-)
Julie Hoff (2002-)

PAC Microforms Subcommittee
Larry Cruse (1993-)

Representatives/Liaisons
To AACCM - Mary Larsgaard (1992-)
To ACMCA - Tim Ross (1991-)
To ALA/MAGERT -
 Kathy Rankin (2003-)
 Lisa Sweeney (2003-)
To CCISA - Linda Zellmer (1999-)
To CUAC -
 David Deckelbaum (2003-)
 Christopher J.J. Thiry (1998-)
To GSIS - Linda Newman (2002-)
To IFLA - Dorothy McGarry (2002-)
To SLA/G&M - Linda Zellmer (2002-)

President’s Message

Howdy fellow WAMLites!

I’m looking forward to leaving hot and muggy Florida for the cooler climate of the Bay Area. Sounds like Charlotte Derksen, Julie Sweetkind-Singer and Jane Ingalls have an interesting and varied program set up for this year’s WAML Spring Meeting.

I want to welcome Lisa Sweeney as our new I/B editor and thank her for taking over this important position in our society. Again many thanks to Linda Zellmer for her outstanding contribution to WAML during her tenure in the position the past 2+ years. Linda will be continuing her many activities in WAML by taking over as editor of the Electronic News & Notes and continuing as Web Manager.

I continue to marvel at the amount, time and energy many members of WAML contribute to the society. We will be searching for candidates for the Vice President/President Elect in the next few months. Here’s your opportunity to play a major role in the future growth of WAML.

On a sad note, I have recently been informed of the death of Elizabeth Winroth, Map Librarian at the Oregon Historical Society. Many of us enjoyed meeting and working with Elizabeth during the Fall WAML Meeting she held in Portland in October, 2001. Her many contributions to WAML over the years have helped to maintain the society’s strong presence in the Pacific Northwest. She will be missed as a valued colleague.

I look forward to seeing many of you at Stanford.

— Rich
WAML President
A First Hand Account of the Columbia Space Shuttle Response and Recovery

submitted by

P.R. Blackwell

Space shuttle Columbia exploded unexpectedly in the air approximately 40 miles above Dallas, Texas Saturday, February 1, 2003. The accident claimed the lives of seven astronauts as they returned to Earth after a 16-day research mission. "The explosion was so powerful the shock wave was heard and felt for hundreds of miles, from Dallas to Louisiana" (Hansen). Shuttle debris searchers worked dedicatedly through days of "driving rain and temperatures that felt like freezing" to recover pieces of the shuttle from the rough, uneven, briar filled terrain of east Texas. (Kimberly) The debris was shipped to Kennedy Space Center, Florida, where researchers are working to reconstruct the shuttle in an ongoing attempt to discover what caused the explosion. The following article is a first hand account of the mapping and recovery efforts from PR Blackwell, Information Scientist at the Forest Resources Institute, Stephen F. Austin University, Nacogdoches, TX; one of the leaders on site for Columbia recovery response.

Columbia Recovery Efforts in East Texas

When the remains of the Space Shuttle Columbia descended upon East Texas February 1st a sequence of events was set in motion that may well change how geospatial technology is used for disaster response for years to come. In many ways, the Columbia incident is unique. It affected a huge area, hundreds of thousands of square kilometers, from Fort Worth, Texas to the Louisiana border. Most of the work involved locating, mapping and recovering small fragments of the spacecraft littered like confetti across the landscape, but it also involved locating and mitigating potentially hazardous materials. Although the event began with the tragic loss of Columbia's crew, the human impact on the ground was minimal. Significantly, it happened right on top of an ongoing effort to prepare for a geospatial response to disaster relief.

US Army HazMat personnel test debris from the Space Shuttle Columbia.

Photo Credit: Dennis Heath – TriGlobal Enterprises
Regional Geospatial Service Centers
The Forest Resources Institute (FRI) is a research group within the Arthur Temple College of Forestry, Stephen F. Austin State University in Nacogdoches, Texas. FRI, founded by a grant from the T.L.L. Temple Foundation five years ago, has been developing a concept of regional located, interconnected geospatial service centers designed to aid local and regional agencies with everything from economic development, to resource management, to emergency response. For several months prior to the loss of Columbia, FRI, in conjunction with the Humanities Undergraduate Environmental Sciences (HUES) lab (a GIS laboratory in the Geography Department at SFA) had been working with the City and County of Nacogdoches to prepare a hazard mitigation plan. Ironically, various pieces of that plan were spread across the conference table in the FRI headquarters when Columbia exploded.

Communications were established with the Emergency Operations Centers (EOC) for the city and the county, needs were assessed and a workflow planned and established through the Incident Commander. Initially, police and sheriff dispatch reports were faxed to FRI and the incident report information was used to geocode the location of reported debris. Often, a “best-guess” approach to geocoding was used to enter reports coming in with less than exact addresses. (A typical location would give something like “1 mile south of FM 123 on CR 203” as the location of the debris.) Local knowledge of the area played an important role in analyzing and plotting the reports. The results of this work were used to update the status maps delivered to the Nacogdoches EOC every 2 hours during the first few days of the response.

GPS Mapping Efforts
GPS mapping operations were quickly organized. Initially SFA technicians from FRI and the HUES GIS laboratory were dispatched to accompany law enforcement personnel as they responded to reports of shuttle debris. Volunteers from across the state joined the GPS effort over the next few days. Standardized data dictionaries were coordinated with federal officials and used to maintain data integrity and insure pertinent information was recorded. As GPS crews came in, data were downloaded from the data loggers and used to populate the master database.

For two weeks, professionals and volunteers worked day and night in the labs and in the field to produce maps to aid search efforts. These included road maps, debris location maps, topographic maps, satellite image maps, and many others. These maps were designed to fill several needs: navigational aids to help searchers get into and out of difficult areas; search grids to identify and segment search areas; analytical maps to help searchers focus their efforts more efficiently; and status maps to brief officials and the press.

Within minutes of the Columbia explosion, FRI staff began arriving at the Tucker Estate, a forty acre wooded tract that houses FRI’s operation. Because base maps and imagery were already prepared, the first map products were delivered to emergency responders within an hour of the event.

Very early in the process, FRI produced a trend line based on known debris locations in Nacogdoches, San Augustine and Anderson Counties. As data continued to come in, that original line held remarkably true. As search efforts become more focused, the original trend line became known as the base search vector.
and teams were dispatched to search grid patterns around it.

Volunteers from all across Texas and the Nation participated in GPS mapping efforts during the first two weeks of the recovery efforts.

Photo Credit: Hardy Meredith – SFASU

Federal Response
The federal response to this event was organized out of the Disaster Field Office (DFO) established in Lufkin, Texas. During the first two weeks of the emergency effort, FRI worked closely with the Lufkin DFO, coordinating support for field operations and channeling data back to the DFO. Support of field operations was critical to the overall success of the effort. In Nacogdoches County, the work FRI and the HUES lab had undertaken with city and county officials in planning hazard mitigation lead to an extremely close collaborative relationship. Trust relationships were established, and officials knew the capabilities of the technical people and the importance of technology in accomplishing the mission. At the same time, technicians knew who to talk to at the city and county level and which product would be most useful. This led to an efficient and effective working relationship.

Federal agencies came into this event without these relationships clearly established. Once on site, however, they quickly saw the capabilities represented by FRI and HUES and began to make use of them. Each county had a separate command structure at the federal level and establishing a working relationship with each of them proved challenging. At the same time, they were having difficulty getting the support they needed from the DFO. Eventually, these factors led to the formation of Forward Mapping Centers (FMC) in the more remote areas.

Forward Mapping Offices
Tred Riggs and Greg Fuselier of the HUES GIS lab initially were doing GPS work with federal authorities in San Augustine County. They soon realized they would be able to respond more quickly if they had facilities to produce maps in the field, rather than having to relay information to Nacogdoches for map production. Using equipment borrowed from the HUES Lab at SPA, they set up a small facility in San Augustine County. Having these capabilities in the field allowed officials to work directly with the geospatial technicians to produce the products needed quickly and efficiently. This model proved so effective that additional forward mapping offices were established in Sabine County as search efforts moved further to the southeast.

Assistance in establishing and manning the remote mapping offices came from all across the state. Craig Scofield with Texas Parks and Wildlife (TP&W) visited operations in San Augustine County, assessed the situation in Sabine County and quickly set up a Forward Mapping Office in Hemphill, Texas. He then forged ahead to set up an office at Six Mile on the banks of Toledo Bend Reservoir. Volunteers in the form of GIS professionals from TP&W, the City of San Antonio, the University of Texas at San Antonio, and Sabine River Authority were brought in to man the new facilities. Stephen F. Austin State University, along with Sabine River Authority, Sabine Internet and Hewlett Packard, provided computers, networking equipment, plotters and supplies to operate these offices.

Fourteen days into the event, FEMA asked local and state volunteers to “stand down” and federal agencies took over search and recovery operations. US Forest Service personnel replaced volunteer search teams and mapping requests were transferred to the Lufkin DFO. The emergency phase of the operation was over and a long-term clean up process was begun.
The Nacogdoches Model

The Columbia incident illustrates the importance of locally available geospatial data and technology in disaster response. It also illustrates that even large disasters can be best handled by local officials. Unfortunately, the technological resources needed to handle something on the scale of the Columbia disaster seldom are available at the local level. In this case, FRI was available and ready when the need presented itself. This approach that worked so well here is being dubbed, "The Nacogdoches Model." It illustrates how even a small community, given good people, proper planning and access to technology, can handle a huge disaster.

The Regional Service Center Concept, as developed by FRI, has proven successful during a very difficult time. The next step is to extend and deploy the FRI model throughout the state and the nation.

References:

Additional information:

Space Shuttle Columbia and her crew website hosted by NASA:
http://www.nasa.gov/Columbia

The Texas Geography Network is a concept of regional located, inter-connected geospatial service centers designed to aid local and regional agencies. Texas Geography Network presentation:

About the Author

PR Blackwell is senior Information Scientist with the Forest Resources Institute at Stephen F. Austin State University. He has been actively involved in geospatial activities at the local, state and federal level for many years. Recently, Mr. Blackwell has been involved with the development and promotion of the Regional Geospatial Service Center Concept, serving as technical architect for the project and building the prototype center in Nacogdoches, Texas. Currently Mr. Blackwell sits on the Texas Geographic Information Council, the Texas Gigapop Board of Directors, the Executive Committee of the AmericaView, a national remote sensing consortium, and serves as Director of TexasView, the Texas member consortium of AmericaView.
Elizabeth Winroth
in Memoriam

by Sue Seyl and Linda Zellmer

Elizabeth Winroth, Map Librarian at the Oregon Historical Society and a longtime member of the Western Association of Map Libraries, passed away on March 5th after a short battle with cancer.

Elizabeth received a Bachelor's degree in anthropology from Portland State University in 1974 and her Masters in Library Science from the University of Hawaii in 1975. She served as the Oregon Historical Society's Map Librarian for over 26 years. During that time, she worked tirelessly to organize, preserve, and enhance the Society's highly regarded collection of Pacific Northwest Maps, which dates back to the year 1551. She shared her in-depth knowledge of the region's history with countless researchers, students, and colleagues. Those who worked with her marveled at her ability to interpret the layers of information that maps can provide.

Elizabeth was active in the Western Association of Map Libraries, organizing and hosting the Fall Meeting, which was held at the Oregon Historical Society in October 2001. She served on the Oregon Geographic Names Board for many years, first as Recording Secretary, then as Technical Advisor. She was first co-author of an atlas, the Business District Map of Portland, Oregon and also compiled and edited the Union Guide to Photograph Collections in the Pacific Northwest, both of which were published by the Oregon Historical Society. She contributed several book reviews to the Information Bulletin and Oregon Historical Quarterly and contributed to the report on the Western Association of Map Libraries meeting in Washington, D.C.

The Oregon Historical Society has established the Elizabeth C. Winroth Fund for Map Acquisitions to honor her memory and legacy. Contributions may be sent to the Oregon Historical Society, 1200 SW Park Ave., Portland, OR 97205.

Publications

Chasing Mayflies: Archiving Spatial Data
by
Linda Zellmer

The Mayfly is an insect in the order Ephemeroptera. It often metamorphoses several times as a nymph before it hatches as an adult. Once it does hatch, it has a life span of from 4-24 hours, during which time it finds a mate, breeds and lays its eggs. So what, you may ask, does this have to do with Digital Spatial Data? I will offer some examples to illustrate the similarity:

- Data for the 1960 Census, the first digital US Census, can be read by computers at the Smithsonian and in a museum in Japan.
- 1970 Census Tract Boundary data is not available from the National Archives. It is also not available from ICPSR. Researchers who want this data must purchase it from Geolytics, a private company that recreated the data when it was no longer available from other sources.
- Some Landsat data from the mid-1970s is no longer available, because NASA forgot to refresh the tapes.
- In the late 1990s, two students at the University of Wyoming produced GIS data as part of their theses, which studied river channel and vegetation changes along the Snake River in Jackson Hole, Wyoming. Their work was funded by the U.S. Forest Service. Their theses included maps they created by digitizing several historical maps and aerial photographs. A year after they graduated, their data was lost when a GIS workstation was replaced with a faster computer. The data had to be re-created by a joint watershed planning task force of Federal, State & Local agencies.
- When the Arizona Department of Economic Security decided to retire their computer that could read 1980 Census tapes, they sent the tapes containing the spatial and statistical data to the Arizona State Archives, without migrating the data. A research group studying land use change in the Phoenix Metropolitan area had to purchase the 1980 census data (from Geolytics) so that they could produce maps showing population density over time.

If you ask many federal agencies what they are doing about archiving geospatial data, they will give you a simple answer: it is in the metadata. What they mean is that they have described data added in the metadata record for the data set. The metadata for the Federal Lands and Indian Reservations data set (1) from the National Atlas of the United States™ is a good example of this type of metadata. The Process Step (which is part of the Data Quality Information) contains the following information:

Process Step:

Process_Description:
Several new federal lands were established since 1998. Those that meet the minimum mapping criterion of 640 acres (1 square mile) were added. They are:
1. Headwaters Forest Reserve, California (Bureau of Land Management)
2. Tall Grass Prairie National Preserve, Kansas (National Park Service)
3. Opal Creek Wilderness, Oregon (Forest Service)
4. Dugger Mountain Wilderness, Alabama (Forest Service)
5. Otay Mountain Wilderness, California (Bureau of Land Management)
6. Gunnison Gorge Wilderness, Colorado (Bureau of Land Management)
8. Agua Fria National Monument, California (Bureau of Land Management)
9) California Coastal National Monument, California (Bureau of Land Management)
10) Sequoia National Monument, California (Forest Service)
11) Canyons of the Ancients National Monument, Colorado (Bureau of Land Management)
12) Grand Canyon-Parashant National Monument, Arizona (Bureau of Land Management)
13) Ironwood Forest National Monument, Arizona (Bureau of Land Management)
14) Cascade-Siskiyou National Monument, Oregon (Bureau of Land Management)
15) Gunnison Gorge National Conservation Area, Colorado (Bureau of Land Management)
16) Silvio O. Conte National Wildlife Refuge, Vermont (Fish and Wildlife Service)

Data sets were obtained from the State, regional, or field offices of the federal agencies which own or administer the newly created lands. The data were re-projected, generalized, and integrated into the existing federal lands data set. Hanford Reach National Monument, Washington (Fish and Wildlife Service) and the expansion of Pinnacles National Monument (National Park Service) are not included in this release. The California Coastal National Monument consists of thousands of Bureau of Land Management-administered islands, rocks, exposed reefs, and pinnacles above high mean tide, within twelve nautical miles of the shoreline, between Oregon and Mexico. The National Monument is shown in the Federal Lands data set as a polygon which encloses this area. . . .

In short, this information describes the fact that 16 new features were added to the Federal Lands dataset in 2000. Any user who wants to see the situation that existed prior to the addition of these new National Monuments, Forests and Wildlife Areas will have to recreate the old data set by reading through this section of the metadata, selecting the areas added, and inverting the selection to show the Federal Land areas that existed before these new land areas were created. To further complicate matters for everyone, every time GIS data is moved around or migrated from an old computer to a new one, ArcView project and map documents have to be recreated.

A GAO report, titled *Information Management: Challenges in Managing and Preserving Electronic Records* (2), released last summer, states that the National Archives has been overwhelmed by the massive amount of information in electronic format generated by Federal Agencies. According to the report, the National Archives and Records Administration is not able to identify and preserve the electronic information that will be needed by future researchers. The primary method used by NARA to preserve electronic records is to print the information out on paper. Only a small fraction (10%) of the records created by agencies is being preserved. It appears that at least some spatial data does have the life expectancy of a Mayfly.

The examples given earlier illustrate a need that has not been addressed: archiving digital spatial data. It is clear that plans regarding data archiving need to be developed. Any plan for archiving geospatial data that is developed should meet legal requirements and established standards for data archiving. The following questions should be answered:

- What are the legal requirements regarding archiving data?
- What data needs to be archived and why?
- Which agencies should archive data?
- Are there any standards related to data archiving?
- Are there any other considerations?

Legal Requirements

Many states, as well as the U.S. Government, have laws requiring agencies to provide access to government information. At the Federal level, the Freedom of Information Act (5 U.S.C. § 552) gives the public the right to request information from government agencies and requires Federal Agencies to provide the information, subject to some restrictions. The act was amended in 1996 to include electronic information. In Indiana, the public records law even includes a reference to electronic maps.
The FGDC has a working group on historical records which developed a list of questions that can serve as a guide to data archiving. According to their document (3), data should be saved if:

- It relates to Government or individual legal rights.
- It might be needed to defend against possible legal action.
- It could be useful to data users in other Federal agencies or the research community.
- Users need the raw, unedited data.
- It has been made available to other users.
- People can use the data without technical assistance.
- It can be used to study change through time.
- It will be difficult or expensive to recreate.
- A government program will be adversely affected if the data is lost.
- It is compatible with more recent data.

Their list of questions (twelve in all) can be reduced to four points. Data should be archived if:

- There could be legal ramifications.
- It can be used by other agencies.
- It will be expensive to recreate.
- It can be used by researchers or to study change over time.

In addition, one item they did not consider in their list is that all data developed by Federal contractors, such as organizations working on grants funded by the Federal government, must be documented and given to the funding agency. Librarians should, at the very least, be taking steps to retain all spatial data concerning their local area and thesis data, especially data concerning their local areas.

Two other resources can be used as a guide for managing historical geospatial data. 36 CFR Chapter 12 Part 1234 Subpart C <http://www.archives.gov/about_us/regulations/part_1234.html> concerns Electronic Records Management. It states that agencies should establish policies and procedures to ensure retention of electronic records and their documentation as long as they are needed. The procedures should address establishing a retention schedule, transferring electronic records to the National Archives, and copying, reformating and other maintenance. 36 CFR Chapter 12 Part 1228 Subpart L Section 270 <http://www.archives.gov/about_us/regulations/part_1228.html> requires agencies to transfer digital spatial data to the National Archives to transfer digital spatial data to the National Archives in SDTS (spatial data transfer standard) format. All electronic information is also supposed to be deposited with information on how the data was developed, a description of the fields or data dictionary, a description of how a data set relates to other data, potential restrictions on use of the data, and information on how often the data will be updated. In other words, spatial data deposited at the National Archives should be documented with metadata.

Storage

Storage can mean two different things to computer users. In most cases, it means the medium used to save information. In the last 20 years, computer users have encountered a lot of different storage media, including punch cards, various forms of data tapes, and floppies, including 8”, 5 1/4” and 3 1/2” floppy disks. CD-ROMs have been used for a little over 10 years. Government agencies are now moving to a new storage medium, the DVD.

Based on experiences, which have often been bad, computer users have learned that storage media are not permanent. Data on tape needs to be refreshed regularly or it will be lost. The life span of a CD-ROM (according to Kodak) may only be 10-20 years, although it may be lower. Kodak has also advertised several archival format CD-ROMs in the past, but they do not guarantee the life span. The only statement that can be made regarding data storage is that new storage media will continue to be developed, so data will have to be migrated to new media as storage media changes.

Some universities, such as Indiana University, have access to large amounts of storage in a mass storage system. One data archiving program that is taking advantage of mass storage is the CIC Floppy Disk Project <http://www.indiana.edu/~libgpd/informs/floppy/floppy.html>. This storage site has collected 5 1/4” floppy disks that were issued by U.S. Government agencies and migrated the information from the disks to a mass storage unit. The plan of this site lends
itself to data archiving, as data stored on the
Bloomington campus is duplicated on a storage unit in
Indianapolis. (Additional data on floppies would be
gladly accepted by the Floppy Disk Project).

Another aspect of storage is the data format. Data
formats change over time, so information may have
to be migrated when software and the data format
used by the software changes. Early GIS users saved
data as coverages; each type of feature (points, lines
and polygons), was saved in a separate file and
described in a data table. Locations of feature names
were also stored separately from the features
themselves. ESRI now commonly stores data in the
form of shapefiles, a set of related files that store all
of the information about a feature, no matter what
the form.

As software changes, the form in which information
is stored may also change. Many computer users
have encountered changes when a new version of a
software program is introduced. When a file is used
and saved in the new version of a software program
the first time, the user may be asked if they want to
save the file in the new version or the old. Almost
every program offers an option to save information in
another format (usually a Save As option). It is clear
that a means of migrating data as software changes
needs to be developed. The Federal Government is
avoiding the problem entirely by saving data in SDTS
(spatial data transfer standard) format. This will work
only as long as programs are capable of using data in
this format. The ideal situation would be a smart
system: a mass data storage unit that is capable of
reading and comprehending metadata, identifying the
software and version used, opening or reading a data
set with that program, and saving a copy of the data
in the format that is currently accepted by users of
the software. (I'm dreaming here.)

Archiving Frequency

Spatial data is not static; places change over time. As
a result, spatial data should be archived to document
the changes that occur through time. Map Librarians
have been in the business of archiving spatial
information, in the form of maps, for many years.
However, digital spatial data is a new form of spatial
information. A means of documenting data changes
over time needs to be developed. As yet, no
determination has been made concerning how often
spatial data should be archived. There are two
possible means of documenting spatial data over time:
a snapshot approach or temporal GIS.

Librarians, including map librarians, have always
considered paper as an archival medium. Barring fire,
a major flood or some other disaster, paper usually
lasts a long time. Treatments, such as deacidification
or encapsulation, can extend the shelf life of paper.
However, most plotter paper and inks are not
archival. Therefore, if a snapshot of a data set is
going to be produced in the form of a printed (plotted)
map, archival-quality paper and ink should be used.

Another means of creating a snapshot of a data set is
to save a copy on a regular basis. This form of data
snapshot could encounter problems as storage media
changes. In some cases, changes to data are being
documented at the feature level; when a new point or
line (a house or a street) is added, the date the
feature was added (built) is recorded in a separate
date field in the data set. Using this type of data set,
change over time could be shown by simply querying
the data set to identify features added before or after
a certain date. Recording date information when a
feature is added results in a temporal GIS data set: a
set of data that can actually be used to show
change over time.

Archiving Responsibility

The last question to deal with regarding data
archiving is who should be archiving data.
Unfortunately, data archiving seems to be similar to
the tale of the Little Red Hen that we heard as
children. The Little Red Hen heard the words "Not
I" whenever she asked for volunteers. Librarians and
archivists can take an active role in data archiving by
accepting responsibility for data archiving. This can
be done by requesting agencies for copies of spatial
data and reminding them that digital spatial data is a
public record.

Conclusions

Government agencies, libraries and archives have
new responsibilities because of electronic records.
They must identify, document and retain spatial data,
migrate the data as storage media changes, and
convert data as the software changes. Digital spatial data is a public record and, as such, does have to be archived. State and local agencies that produce spatial data must comply with Local, State and Federal public records laws. In addition, archived data must be properly described (metadata). Data should be archived if: there could be legal ramifications, it can be used by other agencies, it will be expensive to recreate or it can be used by researchers or to study change over time.

Yes, spatial data is very much like the mayfly. It develops and often goes through several versions before it is acceptable (metamorphoses through nymph stage), it is then made available for use (hatches), spawns decisions (breeds) and then disappears (dies). Once data disappears, there will be costs involved to replace it. By developing plans to archive data now, we may avoid costly problems in the future.

Standards for archiving spatial data need to be developed. Until guidelines are developed, information about data availability and agency plans for data could help preserve spatial information for future users.

References:

About the Author

Linda Zellmer is Head of the Geology Library at Indiana University. She has experience with geologic information, maps and spatial data. Prior to Indiana, she has held positions at Arizona State University (where she set up GIS in the Map Collection), the University of Wyoming (where she took formal geographic information system (GIS) coursework), and Oklahoma State University. Linda has served WAML in a number of capacities, as Webmaster, Editor of the Information Bulletin, and as President. She can be contacted via e-mail at: lzellmer@indiana.edu.

The *Historical Atlas of the North Pacific Ocean* is the second of at least three atlases of historical maps of geographical areas prepared by Derek Hayes. The first, dealing with British Columbia and the Pacific Northwest, was an outstanding and highly-praised production, appearing in 1999. The third, the *Historical Atlas of Canada* has just recently made its appearance. In this same brief span of time, Hayes has also had *First Crossing: Alexander Mackenzie, His Expedition Across North America, and the Opening of the Continent* published. Clearly it seems as though a prolonged period of research, collecting, study and synthesis has led to an outpouring of publications from this author’s mind and hands. Not only is he the author, but he is also credited with the interior design and layout of the three atlases.

The book under consideration here has been very cleverly designed so that map images and text relating to a particular period and theme are confined to from one to three pages. The text is highly explanatory but tightly edited. There is no rambling here. It is written in language readily understood by the interested layman and should serve to open further the general public’s appreciation for both the physical beauty and cogent way in which maps convey information. There are no chapters but the table of contents allows the user to readily identify maps and text related to a particular period of time, a particular cartographer, or a particular expedition. The 285 maps or parts of maps are identified by title and source (the two pages of sources appear just ahead of the index). In the case of several map illustrations, parts of two adjoining maps from the same source have been pieced to allow a single image that represents the whole of the area discussed in the text.

For map libraries and their patrons, collections such as this represent excellent value. Most of us have no ready access to the many collections in which these maps are found. In most cases we would not even know of the existence of many of these maps, in particular the manuscript maps, images of which, in many cases, have not previously appeared in print. Though many of the images have been greatly reduced for inclusion in the atlas, the degree to which most remain readable with a magnifying glass is quite remarkable. Images of people engaged in economic pursuits, ships engaged in exploration, and early scientific equipment for sampling the ocean environment are also included. From the oldest speculative imaginings of what the Pacific looked like, to very recent images created from modern subsurface, surface, and satellite sensing systems analyzed and mapped by modern computer techniques, the contents remain fascinating and informative.

There are, in this reviewer’s opinion, two errors in fact and only one typographical error. That’s a remarkable accomplishment and not worth the space to remark upon. The map library community owes a debt of thanks to the author, the editor and the publishers for bringing us this atlas and its companion volumes.

Ronald Whistance-Smith
Curator Emeritus, William C. Wonders Map Collection
The University of Alberta

Cartographic Treasures of the Newberry Library is a splendid catalogue. It was produced to accompany an extraordinary exhibit at the Newberry Library, held in Chicago, October 2001 to coincide with the 20th International Symposium of the International Map Collectors Society (IMCOS). The catalogue is a slim but exquisite paperback volume showcasing a selection of the library’s unique and valuable maps — spanning five centuries from about 1425 to 1954 — and representing a variety of cartographic styles and purposes. Curators at the Newberry Library, one of the world’s premier repositories of historic maps, chose 77 maps (out of approximately 300,000 in its collections) to represent its crown jewels. Deciding which maps to include in the exhibit — from the thousands of possibilities — was no easy task. The “treasures” selected range from the rare and priceless (e.g., Kaspar Vopel’s 1597 map of Europe, today found only in the Newberry Library) to the contemporary and more common (Essso’s War Map of 1942). In his introduction to the catalogue, James Akerman, Director of the Hermon Dunlap Smith Center for the History of Cartography at the Newberry, writes, “People prize maps for various reasons. As with so many other things, maps’ costliness, rarity, or beauty may catch the eye, but their deeper worth lies elsewhere. The value of cartographic documents resides in their ability to speak about the past, to bring to life the people who made or used them, and to animate the landscapes they depict and the cultures that produced them. The maps selected for this exhibit also exemplify this broader understanding of ‘treasure.’ Whether rare or common, all appear here because they evoke so well the spirit of their age.”

In his introduction, Akerman presents a brief history of the cartographic collection at the Newberry — how a private collection (the Edward E. Ayer Collection of Americana) served as its foundation one hundred years ago, how the collection subsequently grew as the Newberry added to its famed general and local history collections, and how a series of major acquisitions of maps and atlases over the years all helped to enrich and strengthen the map collection. One very interesting detail revealed here is that a number of the Newberry’s maps are not originals. In fact, they are part of the Library’s comprehensive collection of cartographic facsimiles and reproductions. These photographic reproductions of manuscript maps (many are photostats from the Karpinski and Ayer Collections illustrating American colonial history) were gathered from many widely dispersed European archives — some of the original maps having been destroyed during World War II — allowing scholars to study maps from around the world from within the Newberry’s reading rooms in Chicago.

Cartographic Treasures is divided into six sections, with halftone reproductions of maps illustrating each section’s theme. The six sections and their respective themes are: “Grasping the World” (showing how mapmakers have depicted the world or vast geographical areas such as states or continents); “Inventing the Nation” (demonstrating how maps have played a role in creating national identities); “Contesting Places” (demonstrating how maps have been used in warfare and other human conflicts); “Conquering Distances” (focusing on maps depicting movement, navigation and transportation); “Celebrating the City” (the use of maps and views in portraying urban environments); and “Plotting the Countryside” (showing the use of rural maps and views).

Within each section of the catalogue a half dozen or more maps serve to illustrate that section’s theme. For example, nine maps illustrate the fifth section, “Celebrating the City.” The maps — generally one or two per page — are beautifully presented in halftones against a coffee-with-cream colored background, allowing for a remarkable degree of clarity and detail given the size of the reproductions. In addition, there are 23 color plates of maps, arranged collectively near the end of the text. Along with each map is a concise and well-written descriptive paragraph providing background for the reader and placing the map in historical context. Most captions also include one or more references to sources of additional information, all of which are found in the up-to-date bibliography that concludes the catalogue.
The following maps are used to illustrate the “Celebrating the City” section: Erhard Reeuwijk, “Civitas Venetiarii[n],” a profile of Venice (reproduced here in color) from the first printed collection of city views (1486); Jacopo de Barbari, “Venetie MD,” a bird’s-eye view of Venice (1500); Hernando Cortes, “[Map of Tenochtitlan and the Gulf of Mexico]” (reproduced in color) (1524); “Plona,” a view of the relatively small town of Plön (reproduced in color), from Georg Braun and Frans Hogenberg, Civitates Orbis Terrarum, a successful and influential city-atlas of urban plans (1572-1617); Jan Jansson, “Lugudunum Vulgo Lyon,” a view (in color) of Lyon, the capital of Roman France (1657); Louis Bretez, “Plan de Paris,” a detail of a 20-sheet plan showing the Isle de la Cité (1739); Charles Blaskowitz, “A Plan of the Town of Newport in the Province of Rhode Island,” a street plan of the fifth largest city in America at that time (1776); Luigi Rossini, “Panorama di Roma antica e moderna,” showing the ancient city of Rome and also modern sites (1827); “A Map of Chicago’s Gangland from Authentic Sources,” a tourist map (reproduced in color) delineating Chicago’s infamous gangster sites, including “Capone Territory” (1931).

Other maps discussed and reproduced include Abraham Ortelius, “Asiae Nova Descriptio,” from his Theatrum Orbis Terrarum (1570); Martinus Martini, “Pecheli Sive Peking” from Blaeu’s Le Grand Atlas (1663); William Chapin, “Chapin’s Ornamental Map of the United States” (1845); and Count Pál Teleki, “Ethnographic Map of Hungary,” from his The Evolution of Hungary and its Place in European History (1923).

One particularly intriguing entry from the early twentieth century is the Rand McNally Photo-Auto Guide, Chicago to Milwaukee/Milwaukee to Chicago (1909). This guide is an example of one of Rand McNally’s series of “photo-auto guides.” These guides were actually collections of photographs of major crossroads or forks in the road compiled to make certain the early automobile traveler reached his or her destination without taking any wrong turns. The photographs were keyed to a series of maps of the entire route. This item is a fascinating cartographic curiosity from our not-so-distant past.

A review of any exhibit catalogue, without the visuals, will no doubt leave the reader wishing he or she could somehow peruse the catalogue under review. The Newberry Library has made this partially possible by mounting a selection of the maps from this exhibit on the Web at: http://www.newberry.org/nl/programs/exhibits2001.html.

Cartographic Treasures is a beautifully designed exhibit catalogue containing splendid reproductions and enlightening captions, providing the reader with an understanding of the cartographic value and importance of each map and, consequently, the reasons for its designation as a “treasure” at the Newberry Library. Without a doubt this attractive book should be in every map and geography library. Indeed, as the price is only $20, most academic and public libraries as well should enrich their collections by purchasing a copy.

Stephen W. Rogers
Map Librarian
The Ohio State University Libraries
Columbus, OH

It is easiest to start with what this book is not. It is not a work of scholarship, though it does provide some useful information, especially on the subject of map projections. Two sentences on the inside of the front cover give some idea of the book’s intent. “Seeing Through Maps is a book to help people see beyond the ordinary, to better understand the world,” and “Seeing Through Maps is a book to help you learn about maps and people and how to see things from different points of view.” To accomplish this, the authors begin the first chapter by asking, “What is the truth?” and move on to the process of selection involved in the making of any map. “...all maps are selections from everything that is known, bent to the mapmakers purpose” (pg. 8). In order to evaluate a map, you must seek to understand the purpose the map was meant to serve. To illustrate this concept, the remainder of the book focuses primarily on world maps, and in particular the impossibility of “accurately” representing the circular earth (i.e. a globe) on a two dimensional surface (i.e. a map). Emphasis on one of the variables of shape, size, distance and direction results in distortion of the others. A variety of projections are illustrated and discussed, and the message is that
truth is best served by a multiplicity of views.

There is a certain schizophrenia with respect to this message, however. For example, after taking pains to discuss the Mercator projection’s original purpose as a tool for navigation, and ignoring the fact that the shape of the continents (though distorted) is preserved better than in other projections, the authors state that “We can think of no purpose that is served by projecting the world in Mercator’s projection.” (pg. 23). There is actually a hidden message here, and at least initially the delivery is subtle. In a discussion of the Peters’ projection the reader is informed that “Unlike Mercator whose purpose was to help sailors, Peters’ purpose was to help the rest of us.” (pg. 10). In chapter four, “Three Popular Compromise Projections, other Unique View Points and the Elusiveness of Shape”, the authors describe the three projections that have been used by the National Geographic Society. They seem unsatisfied with the Society’s use of compromise projections, and their emphasis on the elusiveness of shape underscores their bias towards equal-area projections such as the Gall-Peters. If there is any doubt regarding this bias, then the reader need only turn to pages 137-139 for advertisements for Peters projection products (not only maps, but refrigerator magnets, postcards, and a jigsaw puzzle) for sale by the publisher ODT. It turns out ODT has been “…the official marketing arm for the Peters Projection map since 1998” (pg. 150) and that one of the authors, Ward Kaiser, introduced the Peters projection map to North America (pg 149).

Besides marketing Peters projection maps, ODT is also a management consulting company that uses maps, and particularly the Peters projection, in their cultural diversity awareness programs (pg. 117). This “human resources” perspective informs much of the presentation of the material in Seeing Through Maps, from the preachy tone, to the blank boxes encouraging the reader to record their “Reactions, Learnings, and New Insights”, to Appendix A titled “Using Map Projections in Human Resource Development and Adult Education”.

A strong point of this book is the numerous black and white illustrations of maps and projections. Accompanying the book is the very large (36” x 56”), color What’s Up? South! world map, included to demonstrate that the world does not have a “top”, and that the custom of putting north at the top of the map is merely that, a custom inspired by the use of the compass for navigation (pgs 48-52). Appendix B, which lists 18 different projections and their attributes, is also useful. The book includes an index, a list of illustrations (though this would work better at the front of the book rather than sandwiched between the appendices and the advertisements), and information about the authors and publisher.

I had certain expectations for this book, and those expectations have no doubt colored my overall reaction to it. I would suggest it for larger public libraries, and for academic libraries building comprehensive geography collections.

Penelope Whitten
Geoscience Subject Librarian
University of Nevada, Las Vegas

When I received the assignment to review this title I assumed, since a CD accompanied it, that it was another tutorial created by ESRI to help the interested reader learn the fundamentals of using ArcView. This time the focus would be on marine sciences. I proceeded to schedule a day of work at home to go through the tutorial and write this review. Well so much for my assumptions. The work turns out not to be a tutorial, but a group of essays demonstrating various ways that an array of organizations, institutions, businesses, and governments are using GIS to enhance their understanding of undersea phenomena.

While the utilization of undersea GIS lags behind the use of terrestrial GIS, the increased computing capacity of desktop computers has placed demands on the GIS community to design tools to adequately deal with the verticality of the water column and the temporal aspects of data pertaining to all the physical attributes of the oceans themselves including the profusion of marine life living in the oceans.

The book is divided into three parts: mapping and visualization, charting, and Internet access. This work is heavily illustrated with many screen captures from a variety of software programs, photographs, diagrams, and charts. The first section deals with the two-
dimensional mapping of the oceans in a traditional GIS and the need for 3-D visualizing. The availability of an abundance of new information due to advances in acoustic remote sensing technology demonstrated by the use of remotely operated vehicles (ROVs), and marine positional and vessel orientation techniques are pushing 3-D visualization to the fore. The first essay in this section deals with data collected by over forty scientists. ArcView converted this data into fifty-eight accessible layers. In order to explore and facilitate a better understanding of the relationships between these data layers, the researchers employed Fledermaus, a suite of 3-D visualization tools. The next two essays provide descriptions of how GIS is being used to assist in interpreting seafloor survey data by the Danish Hydraulic Institute and how the U.S. Marine National Maritime Sanctuary System is using baseline data collected by remote sensing instruments to map the sea floor using GIS at a number of sites, specifically the Fagatello Bay National Marine Sanctuary in American Samoa.

The last three essays in the first section each illustrate how GIS is being used to study various species that make their home in the ocean. One of these articles demonstrates how researchers are tracking right whales and blue fin tuna in the North Atlantic. Ship-, aerial-, and satellite-based platforms are being used to track the migration routes and accurately describe the distributions of these species. This data is then fed into a GIS for analysis. Researchers can now try to establish specific relationships between these species and the specific physical conditions of the waters in which they live. Another article uses GIS to attempt to determine the spatial extent of macroalgae in general, but one specifically known as Ulva, that is found at different depths within the Rehoboth Bay in Delaware’s coastal waters. While existing naturally in these waters, Ulva has been growing out of control due to chemical runoff into the bay. By learning about the extent of the problem scientists hope to be better able to manage the situation. The last article in this section deals with the California Department of Fish and Game Marine Region's efforts to employ ROVs, a non-invasive information gathering technology, to provide scientists with data to help make marine species management and habitat analysis in a more timely fashion. This research was carried out in Northern California off the coast of Fort Bragg. The authors concluded that data collection from ROVs is more affordable than data collection from manned submersibles and that the amount of data collected far exceeds the amount of data that could be collected by human divers.

The first of the three essays in the second section of the book that focuses on charting deals with the development of the first three dimensional nautical chart by Captain Stephen F. Ford. The article describes how Ford began in 1976 to create a navigation aid module to help prevent collisions between vessels by using a geographic overlay on radar data. Eventually in the 1990s Ford was able to modify cubit linear measurement theory to create the first electronic chart. The first 3-D chart produced was of the Cape Cod Canal. A fly-by of this chart is one of several fly-bys included on a CD-ROM that accompanies this collection of essays. Other data contained on the CD includes GIS software tools, a sample teaching module with datasets, and a selection of other GIS datasets.

The second article on charting presents a collaborative effort between the Swedish and Finnish Maritime Administrations to manage their hydrographic data in a sophisticated information system with its primary objective to be a production line for electronic nautical charts. The article gives a thorough description of the system's evolution. At the end of the article I was not certain as to whether or not actual production of electronic charts has begun. The final article in this section deals with using GIS applications to search for a German U-boat that was sunk in the eastern Mediterranean Sea during WWII. GIS helps to determine an exact search box for where to look for the sunken vessel after analyzing information about the bathymetry and seafloor sediments as well as historical weather data. Using GIS can greatly reduce the costs associated with the planning and locating of ships situated on the ocean floor.

The last section of the book deals with how the Internet can be used to distribute maps and data associated with GIS. The first essay in this section presents how Woods Hole Oceanographic Institution has created several web-based applications to provide information on sediment cores, and ocean current data to its geological and physical geographers. In another essay, a private company,
Thales Geosolutions Ltd., has used the Internet to better manage and distribute data to its submarine cable customers.

NOAA has created a cooperative project known as Protected Area Geographic Information System (PAGIS) to deliver spatial data to the individuals responsible for managing the nation’s National Estuarine Reserves and National Marine Sanctuaries. GIS technology is being used to better manage these protected areas. The PAGIS web site makes available an interactive application for viewing spatial data sets and puts in place a support network for the personnel at the twenty-five reserves and thirteen sanctuaries.

The book points to an increased use of this technology in the future. This volume is recommended only for those libraries that are attempting to build comprehensive GIS collections or for institutions that have programs involving the study of marine sciences.

David Deckelbaum
Cartographic Information Librarian
University of California, Los Angeles

A Thread across the Ocean is a tale of historic and heroic proportions which the author fails to do justice to. The topic is the historic laying of the first telegraph cables across the Atlantic; however, though it is an enjoyable read, it is not a scholarly work. The depth of this work could have been so much more; one need only look at David McCullough’s history of the Brooklyn Bridge to see the justice that this great engineering marvel deserves.

While the author clearly concentrates on the economic and political effects this venture had on society, he fails to cover the great geographic or technical challenges of this project. The maps in this text are few and not well detailed. The bibliography is scant. Clearly this book is meant for the amateur historian, not a scholarly researcher.

Peter L. Kraus
Assistant Librarian, Documents
University of Utah

Past Time, Past Place: GIS for History, edited by Anne Kelly Knowles, presents an overview of the integration of geographic information systems (GIS) with current historical research. The book begins with a chapter illustrating how to use historical maps as a foundation for further GIS research. Five chapters of case studies follow highlighting key events in American history, such as the Salem witch trials, the Civil War, and the Dust Bowl in the 1930s. Chapters 8 through 10 cover advanced techniques including 3-D modeling and spatial analysis. The final two chapters look at future directions in the field.

The book is specifically geared towards new users of GIS software or those applying GIS to their historical research for the first time. As ESRI Press publishes the book, it is not a surprise that all of the researchers use ESRI software in their research. GIS terms are highlighted in the text and explained in a glossary at the end of the book as an aid to novice users. Copious notes, explanations, and a section of further reading are included with each chapter. A number of the case studies are accompanied by Web site URLs that allow one to look at the project online or that provide more in-depth information.

The preponderance of chapters are written by those affiliated with academic institutions. The researchers are based in...
departments or centers of history, geography, religious studies, population studies, sociology, and environmental history. Other authors include researchers with the National Park Service, map collector David Rumsey, and the scholars with the Great Britain Historical Research GIS Project. The book covers a wide array of topics ranging from settlement patterns and land use to community structures and lending patterns for home ownership.

As is customary with books from ESRI Press that focus on case studies, the chapters include numerous illustrations, including GIS-produced and historical maps, source documents, and photographs. On the whole these illustrations are well chosen and helpful in clarifying the essays. A few of the explanations for the illustrations could have been more complete. In Chapter 10, “GIS in Archaeology,” Figure 2 shows four different views of the same region around Danebury, England, at different points in time from the Bronze Age to Roman times. Each era shown on the map includes a short explanation but lacks a legend, leaving one to guess as to the meaning of the overlays on the map.

Similar themes recur throughout the case studies, showing that GIS in historical research presents common difficulties across subject disciplines. One of the most interesting of such problems is how to integrate temporal information into the spatial realm. For example, Benjamin Ray addresses the problem by using animated maps and a time line to show the progression and spread of witchcraft accusations during 1692 in and around Salem, Massachusetts. In another example, a series of static GIS maps shows the extent of crops and changes in rainfall in the Midwest before and during the Dust Bowl, from 1925 – 1940. Finally, the Electronic Cultural Atlas Initiative (ECAI) incorporates TimeMap software that allows users to search for data by time period. Projects using this program include a time scroll bar allowing researchers to choose a date of interest for a specific subject, which then activates appropriate layers. It also links the user to the ECAI Clearinghouse where potentially other data sets might be found.

Past Time, Past Place is not a “how-to” book. The authors discuss in detail how they have integrated GIS into their work, but they do not provide a step-by-step guide for new users to do the same. The book brings together projects from a variety of historical research areas giving users in these disciplines the ability to see how others are integrating geography and GIS mapping into their work. Most authors emphasize how GIS has allowed them to test historical theories to a degree not possible without this type of sophisticated software.

The essays are clearly written and interesting to read. Often the authors describe the difficulties encountered along the way with creating useful projects: geographic borders that often are not stable or clear-cut, lack of data in a usable GIS format, and countless hours needed to convert information on paper into a digital format. It is important to convey these challenges to new users of the technology, as the software is complex and time consuming to learn. However, the book also clearly shows how much has been gained by those willing to overcome the hurdles along the way. This book would be useful in any library that supports those wanting to integrate GIS into their historical research.

Julie Sweetkind-Singer is the GIS & Map Librarian at Stanford University. She has previously worked with David Rumsey and currently works with Meredith Williams, two essayists in this volume.

A Good and Wise Measure is not only a groundbreaking historical work; it is also a delight to those who work in the area of cartography, maps, or government documents in libraries. The author makes extensive use of original source material and numerous obscure resources. Simply put, this book can serve as a model as to what scholars can achieve with the aide of a professional librarian.

Francis M. Carroll, of the University of Manitoba, details the historical, economic, social, and political developments of the Canadian-American border. Those who study diplomatic and/or early American history will delight in Carroll's meticulous descriptions of events and characters involved in: the boundary declarations established by the Treaty of Paris;
the Arbitration of the 1820’s & 1830’s involving the Dutch Monarchy; the tales of both American and British survey crews that braved the elements and each other’s suspicions, questionable abilities, and motives; and, lastly, the politics of compromise that established the world’s largest open and stable border between two nations, resulting from the Webster-Ashburton negotiations.

The book contains 15 maps that show excellent detail of the various events which led to the current Canadian-American boundary. The book is thoroughly cited with endnotes and a very useful bibliography of original source material. Carroll achieves his goal of explaining the struggle, between the established British Empire and a fledgling United States of America, to reach a peaceful and amiable resolution, whose long-term effects resulted in other world powers resorting to arbitration and negation in lieu of war to settle boundary disputes.

Peter L. Kraus
Assistant Librarian, Documents University of Utah

All different levels of government are working on some kind of e-government service. Many are taking the lead and integrating geography within their e-government solution in the form of interactive maps. It’s been possible for several years to put up static maps on a web site. Geographic Information Systems (GIS) and Internet Map Server (IMS) technology provide the ability for the public to create their own maps on the Internet. For example, one can map several intersecting layers on top of each other, such as location of burglaries, police stations, and city council district boundaries. ESRI has developed ArcIMS software to help agencies and others easily build interactive mapping sites that use geographic data they have accumulated over the years. *Open Access* provides a representative cross-section of agencies, ranging from small rural organizations using basic desktop GIS software to large federal agencies with powerful mapping services, that have developed interactive mapping sites.

Each chapter in the book highlights one web-mapping site with screen captures to illustrate different parts of the site and what one can do on that site. It also provides a description of the system that runs the site, the web site URL, and acknowledgements. The agencies featured include: Yavapai County, AZ presenting property and voting information; San Diego County, CA supplying a series of inter-related web sites that provide a wide range of information; Delaware Department of Labor integrating employer information, child care, transportation and school information to help its residents find a job; Great Basin Multi-Agency Coordination Group (GeoMac), a federal multi-agency task force providing the latest information on wildfires; and the Department of Housing and Urban Development (HUD) combining HUD, Environmental Protection Agency, and Census Bureau data for citizens to make informed decisions on where to buy a house.

There are many books on GIS that focus on providing access to spatial data and interactive mapping applications. *Serving Maps on the Internet: Geographic Information on the World Wide Web*, by Christian Harder, published in 1998 by ESRI Press, most closely parallels *Open Access*. *Serving Maps on the Internet* looks broadly at a variety of web sites that provide interactive mapping or the ability to download spatial data. Some of the organizations highlighted include Southern California Edison (an electric utility), National Association of Realtors, Minneapolis-St. Paul International Airport, National Ocean Service, and InterRain Pacific (non-profit environmental organization). In addition, *Serving Maps* also provides information about the data and software that each site is using.

Open Access is a nice, short, easy-to-read book that gives one an idea of how governmental agencies are using interactive mapping in their mandate to provide information to their constituents. With more and more public agencies making information available on the web, this is a good book that shows the range of what agencies are doing.

I recommend this book for any library or collection interested in interactive mapping.

Christine Kollen
University of Arizona
Tucson, Arizona.
New Publications

Description and pricing information can be found at the Haworth Press Online Catalog Web site <http://www.haworthpress.com/store/product.asp?skr=4716&AuthType=2>

Review Guidelines

These guidelines have been created to aid the reviewer on questions of format and general policies for reviews.

Review Format: The review should be presented in three sections: 1) the bibliographic citation, 2) the review, 3) identification of the reviewer. Please submit reviews via e-mail. Microsoft Word format as an attachment is preferred. You may also send your review on 3.5" floppy disks. Please note, if you send your review through floppy or e-mail, also send via fax or mail, a backup paper copy for verification of content. Floppies will be returned upon request.

The bibliographic citation should include: Author’s name, title, edition (if applicable), place of publication, publisher, date, number of pages, price, LC number (if known), and ISBN number (if known). An example, including correct punctuation is given below:

Reviews should be double-spaced and follow the usual principles of paragraphing. If reviewed material is compared with other works, please include author’s name, title, publisher and date of publication within the review itself rather than using foot-notes. The review should be followed by your name as you wish to be cited, place of employment, including city and state.

Editorial Policies: The opinions and judgements appearing in WAML reviews are those of the author and do not reflect official sanction of WAML. The book review editor retains the right to make alterations in reviews submitted. If minor revisions do not alter the reviewer’s intent, they will be made without further communication. However, if the review editor feels that extensive revisions are needed, or if changes would result in altering the reviewer’s intent, such editing would only be made with the knowledge and agreement of the reviewer.

Review Content: To a certain extent the contents of a work must be described, however the reviewer should avoid making the review a list of the work’s contents. Rather the review should emphasize analysis, evaluation and comparative criticism. Questions, which should be considered in the review process, include: What is the purpose of the work? Has the content as described by the title been fulfilled? Has the author’s intent as described in the work’s preface and/or introductory remarks been realized in its content? How much of the work’s contents is cartographic, or is it primarily written text illustrated by a few maps? How important is this work for research in geography and cartography? Should it be included in library collections, and what kind? The length of your review should be determined by the importance of the item being reviewed.

Reviews of books received by individual libraries that might be of interest to a wider audience are also invited, so long as they follow the review guidelines. Submit reviews to the Review Editor.

Thank you for your attention to these guidelines. Additional reviewers are always welcome. Please feel free to recommend other qualified reviewers who might be interested in submitting reviews to the Information Bulletin.

Katherine L. Rankin
Review Editor
WAML Information Bulletin
Catalog Department
University Libraries
University of Nevada, Las Vegas
4505 Maryland Parkway
Box 457034
Las Vegas, Nevada 89154-7034
Tel: (702) 895-2224
New Mapping of Western North America

compiled by

Ken Rockwell
University of Utah Library Catalog Department

ALASKA

Alaska Dept. of Transportation and Public Facilities. South extension of the Coastal Trail: key map. 64 maps, scale 1:2,400. Anchorage, Alaska; HDR Alaska, Inc., 2002. OCLC: 51516886

ALBERTA

BRITISH COLUMBIA

ARIZONA

Grand Canyon Monitoring and Research Center. A guide to the Colorado River in the Grand Canyon (From Glen Canyon Dam to Pierce Ferry) March 2000 contours and river-mile system. 1 atlas (unpaged), scale 1:4,000. Flagstaff, AZ: Grand Canyon Monitoring and Research Center, 2002. OCLC: 51288353

CALIFORNIA

Automobile Club of Southern California. Wineries guide map, southern & central California: a map plus information on California wineries from San Diego to San Francisco, including details on tours, tasting, and annual events. Scale ca. 1:3,850,000. Costa Mesa: ACSC,
<table>
<thead>
<tr>
<th>Title</th>
<th>Author</th>
<th>Publisher</th>
<th>ISBN/Other ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benchmark Maps. California road & recreation atlas.</td>
<td>1 atlas (143 p.)</td>
<td></td>
<td>ISBN: 0929591801</td>
</tr>
<tr>
<td>Benchmark Maps. California road & recreation atlas.</td>
<td>1 atlas (143 p.)</td>
<td></td>
<td>OCLC: 50936321</td>
</tr>
<tr>
<td>Bryant, William A. GIS files of official Alquist-Priolo earthquake</td>
<td>SRP, northern and eastern</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fault zones, northern and eastern region. 1 CD-ROM, containing set</td>
<td>region.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>of 170 maps, input scales not given.</td>
<td>Sacramento: California Dept.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bryant, William A. GIS files of official Alquist-Priolo earthquake</td>
<td>Conservation, California</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fault zones, southern region. 1 CD-ROM, containing set of 235 maps,</td>
<td>Geological Survey CD no.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>input scales not given.</td>
<td>2001-06, 2002.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bryant, William A. GIS files of official Alquist-Priolo earthquake</td>
<td>Sacramento: California Dept.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fault zones, southern region. 1 CD-ROM, containing set of 235 maps,</td>
<td>Conservation, California</td>
<td></td>
<td></td>
</tr>
<tr>
<td>input scales not given.</td>
<td>Geological Survey CD no.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Watersheds mapping series, Map set 3, Digital representation of</td>
<td>Crest 199-90 & OFR 99-100,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OFR 99-10 & OFR 99-100,</td>
<td>Freshwater Creek, Humboldt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>county, California. 1 CD-ROM:</td>
<td>California.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field, Edward H. Earthquake ground-motion amplification in</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Southern California. Scale ca.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goetz, Erik. Wilder Ranch State Park. Scale 1:24,000. Published</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gray, Clifton H. et al. Geologic map of the Corona South 7.5'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>quadrangle, Riverside and Orange counties, California: version 1.0.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greene, David C. and Stevens, Calvin H. *Geologic map of</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paleozoic rocks in the Mount Morison pendant, eastern Sierra</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nevada, California*. Scale</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irwin, W. P. *Correlation of the Kalmath Mountains and Sierra</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nevada*. 17 maps on 2 sheets, scale</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kellogg, Karl S. and Miggins, Daniel P. *Geologic map of the</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kaweah Mountain quadrangle, Kern and Ventura Counties,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kohler-Antablin, Susan and Hill, Robert L. Aggregate availability</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kolb, Mary E. et al. Preliminary soil-slip susceptibility maps,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morton, Douglas M. et al. Geologic map of the Corona North 7.5'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Langenhein, Victoria E., et al. *Isostatic gravity map of the</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monterey 30 x 60 minute quadrangle and adjacent areas,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Langton, Mark. *Mountain biking guide & map, Santa Monica</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mad Maps. *Motor adventure destinations, Central/Southern</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mad Maps. *Motorcycle adventure destinations, San Francisco/Bay</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morton, Douglas M. et al. Geologic map of the Corona North 7.5'</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2003. URL: http://
geopubs.wr.usgs.gov/open-file/
of03-17/ OCLC: 51742038

Raumann, Christian G. Digital bathymetric model of Mono Lake, California. Input scale not given. Web version of USGS Miscellaneous field studies no. MF-2393, 2002. URL: http://
geopubs.wr.usgs.gov/map-mf/

Roberts, Carter W. Gravity map and data of the eastern half of the Big Bear Lake, 100,000 scale quadrangle, California, and analysis of the depths of several basins. USGS Open-file report no. 02-353, 2001. URL: http://geopubs.wr.usgs.gov/open-

COLORADO

Bryant, Bruce. Geologic map of the Storm King Mountain quadrangle, Garfield County, Colorado. Input scale 1:24,000. Electronic version of USGS Miscellaneous Field Studies map no. MF-2389, 2002. OCLC: 51548957

Igaze. All topo maps: the Colorado trail. 1 CD-ROM, including all 1:24,000 and 1:250,000 scale maps. Salt Lake City, Utah: Igaze, 2001. OCLC: 51028245

Southwest Colorado Travel Region. Southwest Colorado. 1 map, Scale not given. Shows scenic and historic byways. Durango, Colo.: The Region, 2002. OCLC: 51697334

HAWAII

Travel Graphics International. Hawai‘i’s Big Island: Aloha spoken here. 1 map, not drawn to...

Trusdell, Frank A. et al. Maps showing lava inundation zones for Mauna Loa, Hawai‘i. 10 maps, scales differ. USGS Miscellaneous field studies no. map MF-2401, 2002. OCLC: 51719914

IDAHO

MONTANA

NEVADA

NEW MEXICO

Bexfield, Laura M. and Anderholm, Scott K. Estimated water-level declines in the Santa Fe Group aquifer system in the Albuquerque area, central New Mexico, predevelopment to 2002. Scale ca. 1:96,000. USGS Water-resources investigations report no. 02-4233, 2002 OCLC: 51624977

<table>
<thead>
<tr>
<th>Geographic Map</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UTAH</td>
<td>Billingsley, George H., et al. Surficial geologic map of the Loop and Druid Arch quadrangles, Canyonlands National Park, Utah.</td>
</tr>
</tbody>
</table>
WESTERN CANADA

YUKON TERRITORY

WESTERN U.S.

Wyoming

Notice of newly-published maps and cartographic products are welcome, so they can be announced even before they appear in my default source, namely OCLC. However, I'd like to clarify the scope of the list. Given all the map products available, I have to place some limits on myself and the list, so I've routinely excluded the following: city street maps, simply because of their great quantity, regularly-updated, virtually annual editions of various maps, such as US National Park maps, AAA state and California region maps, state highway dept. road maps, Thomas Bros. Street atlases, NIMA/NOAA nautical charts, and USGS topos.

Thus, I concentrate on thematic maps (including cities, such as an earthquake map for San Francisco), and new maps of states and regions by commercial publishers. Examples are geologic maps covering a USGS quadrangle, a state road map from a foreign publisher, and recreation maps. So let me know when you become aware of a new map, being aware, though, that I may already have had it on a previous list and will try to screen those out.

— Ken Rockwell

New Mapping of Western North America Editor
News of Note

compiled by

Linda Zellmer
Indiana University Library

BENCHMARKS

New Maps Added to Rumsey Collection

Images of 831 new maps and views have been added to the David Rumsey Collection <http://www.davidrumsey.com>. They may be found by searching the database for the author names. Among the items added are:

Illustrated Historical Atlas of the State of Indiana, 1876. Andreas, A. T.; Baskin, Forster and Company. 183 Maps and views. Similar in format to the Minnesota and Iowa Historical Atlases, also by Andreas. Includes detailed maps of towns and counties, as well as views of farms and businesses.

The Official State Atlas of Kansas Compiled from Government Surveys, County Records and Personal Investigations, 1887. L.H. Everts & Co. 491 Maps and views. A mammoth atlas of Kansas, one of the most extensive state atlases published in the 19th century. Maps of cities, towns, counties, as well as views of businesses, farms, and livestock.

The David Rumsey Collection focuses primarily on cartography of the Americas from the 18th and 19th centuries, but also has maps of the World, Asia, Africa, Europe, and Oceania. The collection includes atlases, globes, school geographies, books, maritime charts, and a variety of separate maps, including pocket, wall, children’s and manuscript.

Digitization of the project began in 1997. There were numerous reasons for undertaking the project. Maps are uniquely suitable to high-resolution scanning because they contain large amounts of detailed information, which can be seen more readily when the viewer is able to zoom in and enlarge images on a computer screen. Viewed over the Internet, rare maps become available to those who previously had no access to such collections or were not aware of the maps’ existence. In their original form, maps and atlases can be large, delicate, and unwieldy. Digitization increases their accessibility, and combined with an online catalog allows the viewer a variety of ways to search the collection.

Contributed by Phil Hoehn, Librarian, David Rumsey Collection, philhoehn@juno.com.

Japanese Historical Map Collection

A rarely seen and fragile collection of historic maps of Japan, some dating back four centuries, is available for public viewing online through a new partnership between the University of California, Berkeley’s East Asian Library and private map collector David Rumsey. More than 200 images from about 100 early maps of Japan, including examples of especially rare woodblock print maps of the city of Edo (now Tokyo), from the library’s Japanese Historical Map Collection are in the online collection.

The entire collection is considered the largest, most comprehensive and most valuable of its kind outside of Japan. Most items were acquired by the library in 1949 from the Takakata family as part of a collection of more than 100,000 books, scrolls and maps. It will be scanned by Rumsey, owner of San Francisco-based Cartography Associates, and the campus at the
rate of about 100 every three months. Eventually, each piece may be viewed by anyone, without charge, at any time, from anywhere, at http://www.davidrumsey.com/japan/. “This is an amazing and rare collection that would otherwise be inaccessible to most people,” said Peter Zhou, director of the East Asian Library. “Modern technology is allowing us to expand access to this important collection while, at the same time, ensuring its preservation for the future.”

The collection includes works of art as well as renditions of cities, regions and countries from the Japanese perspective. A 1710 map based on the Buddhist conceptual model places the center of the world at the source of the four great rivers of India and features images of animals’ mouths disgorging the source of these rivers in the Himalayas. Another depicts the coast of Japan, with Dutch and Chinese flotillas offshore. One map shows California as an island. There are also scroll maps, one 34 feet long and another 40 feet long, of the roads of Japan.

Among the most unusual items are 697 woodblock print maps dating from the Tokugawa period (1600-1867). There are 252 maps of Edo, 79 maps of Kyoto, 40 of Osaka, and 30 maps, all from the Tokugawa period, of other cities such as Kanazawa, Nagoya, Nagasaki and Yokohama. Among the earliest maps are those of Osaka (1656), Kyoto (1654-68) and Edo (1676). The earliest Japanese world maps also date from this period.

Both the physical material and online collections are “graphically stunning,” said Rumsey. Yuki Ishimatsu, head of Japanese collections at UC Berkeley’s East Asian Library, selected the maps for the new online collection to serve as a representative sampling of the larger, physical map collection housed in that library.

“Choosing the maps to include in the initial collection to place online was difficult because each map is unique and important in its own way,” Ishimatsu said. “However, we believe the collection presented currently provides a good cross section of the larger collection.”

The collection provides an opportunity to learn about an entirely different cartographic tradition, Rumsey said, adding that Japanese historical maps are unique in the ways they depict space and cultural information.

The “Insight” software of Los Angeles-based Luna Imaging is used on the collection’s Web site, allowing users to zoom in, pan and do side-by-side comparisons of multiple maps simultaneously. Users can save groups of images to create their own customized collections. They also can crop or magnify areas of maps that otherwise would be difficult to decipher, and discover details that reflect artistry, culture, theology, precision and history. Map scholars also can search and sort, and compare and contrast, maps in the online collection based on catalogue records.

Visitors to the site can use state-of-the-art mapping and analytical tools, such as Geographic Information Systems (GIS), to overlay maps from different dates in order to track changes in details such as elevations, population densities, street layouts, provincial boundaries, rivers, bays and much more. They can explore what some areas looked like at different periods in the past and what they’re like today by coordinating the historic maps with modern ones, aerial photos and satellite imagery. Thirteen historic maps of Tokyo can be examined this way now; historic maps of Osaka and Kyoto will be added soon.

“Digitizing the collection really raises it to a new level,” said Zhou, who approached Rumsey about digitizing the UC Berkeley collection when he learned of Rumsey’s love of maps and skills in scanning and digitizing them for the Web. Rumsey’s firm provides online distribution of digital images from The AMICO Library, with its more than 100,000 images of art, and Rumsey’s own private collection of rare 18th and 19th century North and South American maps.

UC Berkeley professors agree that the online collection of Japanese maps will not just help student research and study, but may also enhance it.

Susan Matisoff, professor of Japanese literature and chair of UC Berkeley’s Department of East Asian Languages and Cultures, said she could imagine a student interested in the great Edo-based poet, Bashō, using period maps to track the exact locales of the various places in Edo where the poet lived, gaining a sense of the density of buildings in each area. Students also might follow on a provincial map the sites the poet visited when creating his poetic travel journals.

“Most books show sketch maps of his [Bashō’s] journeys, but the specificity of the maps in this
collection adds a whole new dimension,” Matisoff said.

“Having the maps digitized and on the Web, giving one the ability to zoom in on the details, makes it possible to see things that really cannot be seen clearly with the naked eye, even if the viewer had gone to the trouble to identify a map and get access to the material in the rare book room,” Matisoff said.

Mary Elizabeth Berry, a UC Berkeley professor of history with special research interest in Japan, has pored over the map collection with her students for years. She’s excited about the online project because it opens the collection’s access to a much wider audience and because Web site tools allow relatively easy exploration of the rich map data.

Berry is intrigued by the maps’ detailed notation. For example, they may depict: how villages were geographically distributed, distances between settlements, where railroads were built and where rock was exploded to make room for the tracks, or where the hiking trails were, and the location of gates leading to the emperor’s palace. Students also can explore the visual and cartographic elements of the maps, noting how they changed over time.

“The study of history or language can be so abstract,” Berry said. “Maps open up imaginations. They give you a sort of visual, literal introduction to a place. They restore that physical reality.”

J.B. Harley Research Fellowships in the History of Cartography

The Trustees of the J B Harley Research Fellowships Trust Fund are pleased to announce the tenth series of awards, offering support at a rate of £250 (sterling) per week. The fellowships are designed to assist research in the London map collections. The J.B. Harley fellows and their research interests include:

Guenèvre Fournier (Ecole des Hautes Études en Sciences Sociales, Marseilles, France) Views and maps of Marseilles, Genoa and Barcelona (15th-19th centuries). (3 weeks)

Anthony Mullan (Library of Congress, Humanities and Social Sciences Division, Washington, D.C., USA), The Post-Road from Buenos Ayres to Potosi 1816: the close relationship of a map to travel literature and visual culture’ (2 weeks)

Professor Karl Offen (University of Oklahoma, Department of Geography, USA), Mapping Mosquitia: Miskitu identity and the geographical imagination in Northeastern Nicaragua’ (3 weeks).

12 submissions were received. For details of past awards, numbers of applicants, and extracts from previous Fellows’ reports, see http://ihr.sas.ac.uk/maps/harlfws.html, part of the ‘Map History’ gateway site.

For information about applying for a Fellowship (closing date November 1, 2003) please e-mail or write Tony Campbell, Hon. Sec., Harley Fellowships, 76 Ockendon Road, London N1 3NW, UK and state where you saw this notice. Contributed by Tony Campbell, t.campbell@ockendon.clara.co.uk.

CANADIAN NEWS

Tactile Atlas of Canada

In 2000, Natural Resources Canada (NRCan) produced the first version of the Tactile Atlas of Canada. This atlas includes tactile maps that show political boundaries, as well as major lakes, rivers and cities of Canada’s provinces and territories. The maps are printed with either Braille or large text. The recently produced second edition of the atlas has separate maps in large print and in Braille. The Canadian National Institute for the Blind (CNIB) will receive 55 free copies of the new atlas, to be distributed to their offices across Canada.

In spring 2002, NRCan established the Mapping for the Visually Impaired (MVI) Web site <http://tactile.nrcan.gc.ca> to allow vision-impaired clients and their service providers and caregivers to download maps and geospatial data. The data is used to produce personalized tactile maps and graphics to educate users on the geography of Canada, which will help them navigate within neighborhoods and travel to other destinations in Canada.

The Web site is made up of three main areas:

- Maps for Education, which presents the Tactile Atlas of Canada and themed
tactile maps to aid in teaching geography. Maps can be downloaded from this site.

- Maps for Mobility, which includes instructions on making maps to help vision-impaired persons navigate to enhance their mobility. Sample maps can be downloaded and printed.

- Maps for Transportation, which also includes sample downloadable maps, as well as instructions on how to make city maps to assist users in planning travel to destinations in Canada. The site also describes how to print raised maps, which requires an inkjet printer, a thermal enhancer and capsule paper.

With the expertise that NRCan developed through the project, it has begun producing prototypes of audio-tactile maps and mobility training maps. NRCan developed the Tactile Atlas of Canada and Web site in cooperation with partners from the academic and private sectors. The print version of the Atlas was produced and published in cooperation with Tactile Vision Inc., a Canadian company. The CNIB was a key partner in making the Atlas successful for the user community.

The MVI Web site is associated with the Information and Services for Persons with Disabilities Cluster; an initiative to improve the ability of persons with disabilities to access information and services on-line. Established through the Government On-Line initiative, the Cluster is led by Human Resources Development Canada, and includes Industry Canada, Transport Canada and NRCan. NRCan is working with other Government of Canada agencies, including Industry Canada's Web-4-All initiative (<http://www.web4all.ca>) to widen the access to tactile maps through Community Access Program sites (<http://cap.ic.gc.ca>) located across the country.

it appeared that the later heading for Victoria (China) would be Hong Kong (China), it was necessary to add Special Administrative Region to the qualifier for the heading for Hong Kong as a whole in order to resolve the conflict between the headings for the city of Hong Kong and for Hong Kong as a whole. In July 2002, however, the Foreign Names Committee of the U.S. Board on Geographic Names determined that the city of Hong Kong is historical only. As a result of this determination, the Library of Congress has changed the heading Hong Kong (China: Special Administrative Region) back to the form Hong Kong (China). The historical city of Hong Kong has been established as Hong Kong (Hong Kong).

In descriptive cataloging practice, all former and current headings are valid, depending upon the usage in the item being cataloged. Subject cataloging practice is described in the Subject Cataloging Manual: Subject Headings, H 978, Hong Kong (China). The official languages of Hong Kong remain Chinese and English. Because there is uncertainty about English remaining an official language, all government bodies of Hong Kong (China) will be established provisionally (008/33 = value c). If the item being cataloged shows the government body's name in Chinese only, establish the body in Chinese and code the name authority record provisional. If the item being cataloged shows the government body's name in English, establish the body in English and code the record provisional. If the item being cataloged shows the body's name in both Chinese and English, establish the body in English (according to

CATALOGING NEWS

News from the Library of Congress

The Library of Congress implemented the 2002 edition of AACR2 on December 1, 2002. The 2002 AACR2 and its related Library of Congress Rule Interpretations (LCRI) are included in Cataloger's Desktop. The most significant change in the 2002 AACR2 impacting cartographic materials is the renaming of the "mathematical data area." It will now be called the "mathematical and other material specific details area" to reflect the addition of provisions for the description of electronic cartographic resources (3.3, 3.7B8). The physical description area has been expanded to include provisions for layout (3.5C2), production method (3.5C3, LCRI 3.5C3), and medium (3.5C6, LCRI 3.5C6). Revised Chapter 3 also contains a number of editorial changes.

Hong Kong Cataloging Changes

After Hong Kong reverted to China in 1997, a new heading was created (Hong Kong (China)). This heading was being used for Hong Kong as a whole until May 2002 when it was changed to Hong Kong (China: Special Administrative Region) because it was discovered that the city of Victoria had changed its name to Hong Kong in 1997. Since
AACR2 24.3A1) and code the record provisional. Do not revise a provisional heading for a government body established in either Chinese or English if the form in the other language becomes available later. N.B. The instruction above does not apply to non-government bodies.

The MARC country code for Hong Kong (hk) is no longer valid and will be deleted from the code list. The appropriate fixed field in bibliographic records should now be coded for China (cc). The geographic area code for Hong Kong was changed from a-hk to a-cc-hk.

In the Library of Congress Classification, in those cases where specific numbers have been established for Hong Kong, the numbers will for the most part continue to be used. References to these numbers have been made from the corresponding numbers for China.

David Rumsey Collection MARC Records, 2001-2002

As of December 31, 2002, the David Rumsey Collection created in OCLC 3,480 Machine Readable Cataloging (MARC) records representing 4,338 images in its online library. Maps represented 92% of the records, and views, graphs and other illustrations 8%. Eight percent of the records were for images published before 1751, 9% from 1751-1800, 30% from 1801-1850, 50% from 1851-1900, and 3% after 1900. About 79% of them were in English, 10% French, 7% German, 2% Spanish, 1% Latin and 0.5% in Italian.

Of the map images 58% covered North America, 21% Europe, 7% Asia, 5% World and its hemispheres, 4% South America, 3% each for Africa and Oceans/Polar Regions. Most of the maps were general, but 14% were assigned subject or special form headings: 8% were assigned an economic geography heading (primarily cadastral maps), 3% each for transportation and physical geography (mostly geology), 1% history, and 2% other forms or subjects (e.g., aerial views, population).

To receive (as email attachments) checklists of the images cataloged in 2001 and 2002, or monthly updates contact the undersigned. The checklists include the OCLC number.

I would be curious to know of libraries adding these records to their online catalogs. (Two University of California campuses are. Are there others?)

Contributed by Phil Hoehn, philhoehn@juno.com.

CONFERENCES AND CLASSES

Western Association of Map Libraries. Fall 2003 Meeting. Santa Cruz, California. Host: Cynthia Jahns. URL: http://library.ucsc.edu/maps/waml/

Maps & Society Programme, 2002-3. University of London, Warburg Institute, Woburn Square, London at 5 PM on a Thursday. URL: http://www.ihrinfo.ac.uk/maps/warburgprog.html or contact Tony Campbell (t.campbell@oeckendon.clara.co.uk).

International Conference on the History of Cartography. Portland, ME & Cambridge, MA, June 15-

North American Cartographic Information Society (NACIS), To Be Arranged. For more information see: http://www.nacis.org/.

EMLOYMENT

GIS/Map Librarian. Columbia University Libraries. Applications will be accepted immediately and until the position is filled. Submit résumé to cul-recruiter@columbia.edu or send it to Human Resources, Columbia University, Box 18, Butler Library, MC 1104, 535 West 114th Street, New York, NY 10027. Please reference Search #70103010 and include your e-mail address.

Government Documents/Instruction Librarian, Assistant Professor. Minnesota State University Library. Application deadline: applications received by February 14, 2003 will receive priority consideration. Date of appointment: August 18, 2003 - May 10, 2004. Send detailed letter addressing position qualifications, vita and the names, addresses, e-mail, telephone and fax numbers of four to six professional references to: Government Document/Instruction Librarian Search Committee, c/o Ms. Becky Schwartzkopf, Memorial Library, Minnesota State University, Mankato, P.O. Box 8419, Mankato, MN 56001; Telephone: (507) 389-5956; TTY: (800) 627-3529 or 711; FAX: (507) 389-5155; E-mail: becky.schwartzkopf@mnsu.edu. For more information, see http://www.lib.mnsu.edu.

Map Librarian, Thomas R. Smith Map Collection, University of Kansas Libraries, Lawrence, KS. Application deadline: Applications received by February 10, 2003 will receive first consideration. Applications will be accepted until the position is filled. Applicants should provide a letter...
indicating how their experience relates to each of the required and preferred qualifications, a current resume and the names, addresses, telephone numbers, and email addresses of three professional references. Send application to: Sandra K. Gilliland, Asst. to the Dean, University of Kansas Libraries - 502 Watson Library, 1425 Jayhawk Boulevard, Lawrence, KS 66045-7544; phone: (785)864-8922 fax: (785)864-5311; email: sgilliland@ku.edu. More information at: http://www.lib.ku.edu.

Map Librarian, Map Collection & Cartographic Information Services, University of Washington Libraries.
Application deadline: no later than 5:00 p.m., Wednesday, April 23, 2003. Applicants should submit a letter of application, full resume including a work telephone number and email address, salary requirements, and the names, addresses and telephone numbers of at least three references who are knowledgeable of the applicant’s qualifications for this position. Send application to: Charles E. Chamberlin, Deputy Director of Libraries, University of Washington Libraries, 482 Allen Library, Box 352900, Seattle, Washington 98195-2900. University of Washington Libraries’ Home Page is: http://www.lib.washington.edu

Map Librarian. East View Cartographic. Librarians interested in applying for this position should submit their letters of application, CV, and contact information for three references to: East View Cartographic, Geoffrey Forbes, Director of Operations, 3020 Harbor Lane N, Minneapolis MN 55447-5137; gforbes@cartographic.com; tel. (763)235-0679; fax (800)800-3839. Additional information can be found on the East View Cartographic Web site <http://www.cartographic.com/vacations.asp>.

GENERAL NEWS

Rand McNally files for Chapter 11

From a Rand McNally Press Release — Rand McNally & Company, the premier provider of mapping, routing and trip-planning tools, announced February 11, 2003 that it has received unanimous approval from its senior and subordinated lenders in support of its recapitalization plan, previously announced on January 14, 2003. Upon consummation of the plan, Leonard Green & Partners, L.P., a Los Angeles-based private equity firm, will have a controlling interest in Rand McNally. The company’s indebtedness will be reduced from approximately $350 million to $100 million.

In order to bring the agreed recapitalization plan into effect, Rand McNally announced that it had filed voluntary petitions in the U.S. Bankruptcy Court for the Northern District of Illinois for relief under Chapter 11 of the U.S. Bankruptcy Code.

The Bankruptcy Court has set a hearing date of March 18, 2003 to confirm the company’s plan of reorganization. The Bankruptcy Court today has entered an order authorizing the company to pay all of its pre-petition trade creditors in full when due, and post-petition business will not be affected by the Chapter 11 filing. Normal business operation will continue, including payment of employee wages and payments to trade creditors for goods and services provided both before and after today’s filing. There will be no interruption of service to its customers, and retail outlets will continue business as usual.

Leonard Green & Partners, L.P. is a Los Angeles-based private equity firm specializing in management buyouts of middle market companies. Since its founding in 1989, Leonard Green & Partners, L.P. has invested in 27 transactions. The recent closing of Green Equity Investments IV, L.P. brings the total amount of private capital managed by the firm to approximately $3.7 billion.

Imago Mundi – Routledge Announce Partnership

Imago Mundi is delighted to announce a five-year publishing partnership with Routledge
Journals, to start with the next issue of the journal (No. 55, July 2003). Routledge is part of the long-established and well-respected Taylor & Francis publishing group. Based in the UK, they also have a Philadelphia office. Our agreement will guarantee the financial future of IM, while Routledge’s promotion of the journal will ensure that it becomes far better known and far more widely read than at present - of obvious advantage to those who write for it.

Readers of IM will not notice any significant change. Routledge will be handling the business side but Imago Mundi Ltd retains the copyright and Catherine Delano Smith will continue to have complete editorial independence.

Personal subscribers, however, will find that things are more convenient. The sterling price will remain unchanged (for the 11th year in succession) while the dollar equivalent will be slightly reduced (making the figure actually lower than it was in 1992)! Online and credit card facilities will simplify the process of payment, particularly for those in Europe. A professionally-staffed office will ensure a prompter response than before, and Airspeed shipments will mean that overseas subscribers receive their volume considerably quicker than in the past.

The main difference is that institutional subscribers (and hence those who use the libraries in question) will be able to access IM online. So, from next year, IM will be on the Web, and fully searchable - making it all the more important that your library subscribes. The search continues for an effective way to convert the back issues (1935-) and mount them on the web. It is hoped that an announcement can be made about that during the first half of next year. Finally, it has been agreed with Routledge that, from 2004, IM will appear twice a year. This will enable the Bibliography and Reviews sections to be even more up to date, and allow articles to be published with even less delay. Routledge will be contacting subscribers directly concerning their subscriptions. For information from Taylor & Francis (Routledge) about a new subscription, their email is: orders@tandf.co.uk.

Contributed by Tony Campbell, Chairman, Imago Mundi Ltd. <t.campbell@ockendon.clara.co.uk>

Cartographic Treasures at Harvard

In conjunction with the 20th International Conference on the History of Cartography the Harvard College Library will host an exhibit to highlight Harvard’s cartographic treasures. The exhibit will be located in the Harvard Map Collection in Pusey Library and the Houghton Library. Significant items will be selected from the Houghton Library’s Leichtenstein Collection, the Harvard Map Collection, the Gutman Library of the Graduate School of Education, and the Harvard Collection of Historical Scientific Instruments.

A sample of the items to be shown include: Casper Vopel’s ca. 1558 world map in 12 sheets; Jodocus Hondius’ 1595 8 sheet map of Europe; John Seller’s 1675 map of New England; Lewis Evans’ 1749 map of the Middle British Colonies; Sanuto’s 1588 atlas of Africa; Jeremy Belknap’s 1796 manuscript maps of the boundaries between the U.S. and the Indians; a Korean manuscript atlas from the 17th century; Haestens 16th century 6 sheet map of Jerusalem; and Osgood Carleton’s map of the United States and his 1797 map of Boston.

The exhibit will open to the public on June 16th, 2003 and run through September 2003. Additional information may be requested by contacting maps@harvard.edu. Contributed by David Cobb <cobb@fas.harvard.edu>.

35th Anniversary WAML t-shirts

Thirty-fifth Anniversary T-shirts from the Hawaii WAML conference are available for $8 per shirt. More information is available at: http://libweb.hawaii.edu/libdept/WAML/tshirt.html. Contributed by Ross Togashi <rtogashi@hawaii.edu>.

INTERNET RESOURCES

David Rumsey Collection Introduces Online Browser-Based GIS

San Francisco, CA—High-performance virtual reality tools on the David Rumsey Internet GIS site make it possible to interact with history using modern online mapping technologies. A new suite of gaming and simulation techniques available at http://www.davidrumsey.com/gis/3d.htm, give Web-based GIS and map enthusiasts the unique opportunity to fly through and interact with late 1800s maps of California’s most scenic and dynamic landscapes: Yosemite Valley, Lake Tahoe, and

"Our gaming tools add a new twist to 3D Web GIS," said David Rumsey, Cartography Associates President. "The realism and sense of playfulness typically experienced with virtual reality and simulation technology is now possible with a Web-browser based GIS." A 3D mosaic of Lewis and Clark's legendary early 1800s expedition of the Western territory of the U.S. is featured along with the new 3D California data sets.

"Rumsey is pioneering new applications on the Web, particularly with the Lewis and Clark expedition," said Alex Philp, President of GCS Research. "The Rumsey GIS site offers one of the most compelling experiences on the Web—priceless content through a variety of 2D and 3D experiences. No one else is doing this!"

Over 30 maps of the Lewis & Clark expedition area were recently added to Rumsey's online GIS collection, including pre-voyage and journey maps, and Lewis' original 1814 map of the team's routes. Together, the 2D GIS maps and the 3D mosaic give visitors an opportunity to celebrate the 200th anniversary of the famous journey through a rich combination of history and modern-day mapping technologies.

"Rumsey's vision transforms concepts into tangible perceptions of the Lewis and Clark historical geography," said Philp. "Together with Telemorphic and the other technology partners, the dream is becoming a reality." Rumsey and Telemorphic, Inc. (http://www.telemorphic.com) created the browser-based interactive 3D visualization capability with support from Knightcap Productions and ID8 Media, Inc. Launching the 3D map viewer is simple. Once the full 3D map file is downloaded to the user's desktop, they can move through the map at varying speeds and angles, stopping to inspect various points.

"People can fly through and experience history from any vantage point and any angle in space," said Rumsey. "The Lewis and Clark mosaic allows students and teachers to visually experience maps that detail the topography and changing landscape along the expedition route, over a period of about 100 years, and compare those changes with current geospatial information." Previous collaborations between Rumsey and Telemorphic include the Lewis and Clark Expedition 200th Anniversary Mosaic and the David Rumsey Collection GIS Viewer, which were recognized at the 2002 ESRI International User Conference for "Most Unique Map" and "Best Internet Application," respectively.

Rumsey's Web site earned a Webby for Outstanding Technical Achievement, the first Internet GIS site to win this prestigious award. The site was selected as Yahoo's Pick of the Week, Best of the Net from About.com, Site of the Day from USA Today, and Editor's Choice from Netscape, Lycos, AOL and other search engines, WiredNews and TechTV, and Wired and Mercator's World magazines.

Rumsey's physical map collection is one of the largest in the United States focusing on 18th and 19th century North and South American cartographic materials, and maps that cover the entire world. More than 8,000 historical maps from Rumsey's physical collection of 150,000 are available for on-line viewing. Using Luna Imaging's (www.luna-imaging.com) Insight software, Web viewers can experience this unique collection of historic maps in a revolutionary way. Users can zoom, pan and do side-by-side comparisons of multiple maps and save groups of images to create their own collection that holds a special interest. Complete cataloging data accompanies every image, allowing for in-depth searching.

Cartography Associates, founded in 1996, promotes the distribution of digital facsimiles both in print and electronic media. Specializing in both primary source documents and cutting-edge technology, Cartography Associates is committed to developing tools that integrate cataloging with visual images on the Internet. CA's vision is to offer users the best of both worlds: the powerful searching, access, and user functionality made possible by technology, combined with the visual beauty, technical mastery and intellectual richness of original source materials.

Additions to Union List of Fire Insurance Maps

Iowa and Minnesota, plus a bibliography of works about fire insurance maps, are newly added sections to WAML's Union List of Fire Insurance Maps (http://www.lib.berkeley.edu/EART/sanbul.html). In the paper Occasional Paper version of the Union List, holdings for these two
states were difficult to use because most were out of sequence in an addendum. The next state that will be added, in about a month, is Missouri (most of its holdings appeared not in an Occasional Paper but later, in an easily overlooked issue of the Information Bulletin.)

GdC Web Site Updated

The Web site for the European Map Curators Group has been updated with progress reports for the period 1988-1990. The reports are available at: http://www.kb.nl/infolev/liber/intro.htm#pro1988. Reports for Austria, Belgium, Catalunya, Denmark, Finland, France, Germany, Netherlands, Norway, Poland, Spain, Sweden and the United Kingdom are available in English. When time permits, the first series of progress reports for the years 1984-1986 and 1986-1988 will be mounted so that the site will be complete. A separate Web site of the Working group for Education, which is regularly updated, is also available on the GdC Web site <http://www.maps.ethz.ch/gdc-education.html>. Contributed by Jan Smits, Webmaster GdC-Homepage <Jan.Smits@kb.nl>.

Digital Middle Atlantic Maps

The New York Public Library’s (NYPL) Map Division has recently mounted a digital collection of Middle Atlantic maps. The collection also includes maps of North America, the United States, the World, and the Western Hemisphere, that show the Middle Atlantic region. The collection can be viewed at: http://www.nypl.org/research/midatlantic.

The American Shores: Maps of the Middle Atlantic Region to 1850 site was funded by NEH. Once on the site, users will see highlighted a sampling of maps from the 1000+ which were conserved, cataloged and scanned during 2000-2002. The entire collection can be viewed by clicking on the “Browse this collection” button at upper right. Users can pan and zoom the maps available in the On the American Shores site. The site is still under construction; comments from users would be greatly appreciated.

Much of the site is designed and under the control of NYPL’s Web design group. The scanning was handled by the NYPL digital lab. The maps were selected and cataloged by Map Division staff, who also composed descriptive text. Contributed by Alice Hudson, Chief, Map Division <ahudson@nypl.org>.

PERIODICAL ARTICLES

imagery. *Robotics & Autonomous Systems*, v. 41 no. 2/3, p.119, 9p

Shen, G., 2002. Measuring Accessibility of Housing to Public-

US FEDERAL, STATE AND LOCAL GOVERNMENT NEWS

NOAA’s New U.S. Climate Atlas

A new CD-ROM of the Climate Atlas of the United States (version 2.0) is now available from the National Oceanic and Atmospheric Administration (NOAA). The CD-ROM atlas consists of more than 2,000 color maps that depict normal or mean temperature, precipitation, snow and other parameters for all areas of the United States for the period 1961-1990. The atlas, produced by the NOAA National Climatic Data Center in Asheville, N.C., replaces the very popular paper copy Climatic Atlas of the United States published in 1968, and supersedes the earlier CD-ROM (version 1.0) published in 2000 that only contained maps for the contiguous 48 states. The new atlas — which includes Alaska and Hawaii — now contains weather station data for 7,700 locations, along with detailed documentation of the data sets used to generate the maps.

The purpose of this atlas is to depict the climate of the United States in terms of the spatial distribution and variation of major climatic elements. Climate has a profound — often controlling — effect upon the life, mood, health and activity of all of us. The Climate Atlas will provide information for commercial, industrial and agricultural applications, researchers, educational institutions, as well as for the general public. Information contained in the atlas will be used for planning, engineering and scheduling purposes. Its primary purpose is to show the “normal” or average spatial patterns for the various climatic parameters. Maps of extreme climate events such as tornado tracks, hurricane landfall and hail frequency are also included.

The National Climatic Data Center (NCDC) developed the new atlas using innovative technology and Geographic Information Systems (GIS) to generate the high quality maps. Specifically, Parameter-elevation Regressions on Independent Slopes Model (PRISM), an analytical spatial climate model developed by the Spatial Climatic Analysis Service
at Oregon State University, was used to produce 4 x 4 km grids for many of the parameters. PRISM is a highly advanced system, which was designed to map climate in the most difficult situations — including high mountains, rain shadows, temperature inversions, coastal regions, and other complex climatic regimes. It uses station point data, a digital elevation model (DEM), and other spatial data sets in conjunction with Environmental Systems Research Institute’s (ESRI) ArcInfo to generate the monthly and annual grids. NCDC then generated maps of these PRISM grids using ESRI’s ArcView. There are also several elements — such as wind, sea level pressure, days with fog, etc. — that are not suitable for treatment by PRISM because they are reported by fewer stations, or because they lack a topographic or elevation influence that is accounted for in PRISM. NCDC created grids for these elements using the inverse distance weighting function in ESRI’s ArcView.

The user may install the Atlas onto a local drive, or run the Atlas from the CD. From the Atlas interface, the user chooses an element type (temperature, precipitation, snow, etc.), an element (mean, maximum, record extreme, etc.), and a geographic area (Lower 48, Alaska or Hawaii). The Atlas displays maps of the selected element and area using ESRI’s ArcExplorer, which is included on the CD. ArcExplorer provides GIS capabilities, such as zoom, query, identify and theme layering.

The Climate Atlas CD-ROM is available from NCDC at a cost of $130 (online) or $175 (off-line) plus $11 shipping and handling charge. You can place your order, view sample maps or learn more information about this product at: NOAA’s Climate Atlas of the United States. Individual Atlas maps are also available online in PDF and in ESRI shape file formats from NCDC’s “Online Store” at: Climate Atlas of the United States <http://nndc.noaa.gov/?http://oys.nndc.noaa.gov/plsstore/pls ql/plsstore.prodspecific?prodnum=C00519- CDR-A0001>.

National Wildlife Refuge System Map and Brochure

Nationalatlas.gov® and the U.S. Fish and Wildlife Service are pleased to offer a map showing the National Wildlife Refuge System for the United States of America. The system is a network of habitats that benefit wildlife, provide unparalleled outdoor experiences for all Americans, and protect a healthy environment. Since President Theodore Roosevelt designated Florida’s Pelican Island as the first wildlife refuge in 1903, these lands have grown to encompass more than 540 wildlife refuges, each reflected on this map. Refuges are special places that the U.S. Fish and Wildlife Service and its partners restore, protect, and manage for America’s wildlife.

Today there is at least one wildlife refuge in each of the 50 States, and one within an hour’s drive of every major U.S. city. They offer the public opportunities for wildlife watching and photography, nature trails and observation, hunting and fishing, and education.

The National Wildlife Refuge System map measures 28- by 32-inches and is available from a USGS Earth Science Information Center (ESIC). To locate your nearest ESIC, call 1-888-ASK-USGS, or visit http://www.usgs.gov. For more information, and a list of other National Atlas maps, visit the atlas Web site at http://www.nationalatlas.gov. The map (stock # 113787, ISBN: 9780607865073) is available for $7.00 plus $5 shipping & handling. The Brochure (stock # 113788, is available for free. Contributed by Sheryl Girke-Jackson, sjackson@usgs.gov.

Middle East, Iraq, and Baghdad Maps

The National Imagery and Mapping Agency (NIMA) recently released three special reference maps of the Middle East, Iraq, and Baghdad to the public. NIMA produced the maps as a reference tool to help its public affairs office and other government public affairs offices relate with the public on efforts pertaining to the region. The unclassified maps are suitable for reference only and should not be used for other purposes. The scales of the maps are as follows:

Baghdad 1:40,000, Iraq 1:125,000, and the Middle East 1:450,000.

The US Geological Survey is the sales agent for the public distribution of unclassified NIMA topographic map products and digital cartographic data. NIMA is a national intelligence and combat support agency whose mission is to provide timely, relevant and accurate Geo-spatial Intelligence in support of our national security. Geo-spatial Intelligence is the exploitation and analysis of imagery and geo-spatial information to describe, assess and visually depict physical features.
and geographically referenced activities on the Earth. Headquartered in Bethesda, MD, NIMA has major facilities in Washington, D.C., Northern Virginia, and St. Louis, MO. Electronic versions are available in JPEG, EPS (zipped), and MrSID® formats at: http://www.nima.mil/ocm/nima/panews.html. (NOTE: MrSID® is a trademark of LizardTech, Inc.). The maps, Middle East (stock #’s 114513, $10.00), Iraq (stock #’s 114514, $10.00), and Baghdad (stock #’s 114515, $15.00) are available for purchase through U.S. Earth Science Information Center (ESIC) or the U.S. Geological Survey’s map sales office. A $5 handling fee will also be assessed on each order. Contributed by Sheryle Girk-Jackson, sjjackson@usgs.gov.

National Elevation Data Bulk Purchase Price

The USGS is now offering bulk pricing for data purchases of the National Elevation Data (NED) dataset on media. New automated production methods have allowed for more efficient product distribution, and those cost savings are being passed on to the customer. Prices for the NED dataset on CD-R have been established. Prices for other media are yet to be determined. The cost for the entire NED dataset ordered on CD-R is $3565 ($3520 for data + $45 for CD processing). A $5 handling charge will apply to all orders.

The total number of CDs for the full dataset is 110. The dataset includes the conterminous United States, Alaska, Hawaii, Puerto Rico, the Pacific Islands, and the Samoan Islands. The data is available in binary floating point raster with header or ArcGrid formats. The majority of the conterminous US files are one raster of 2 by 6 degrees latitude and longitude each; Alaska files are rasters of 1 by 1 degree latitude and longitude; the island files are rasters of variable sizes. Each order will include an index map and each CD will be numbered. Partial bulk orders of NED data are also available for delivery on CD-R.

The data for pre-defined areas on CD can be ordered on EarthExplorer or through a map index site at: http://edcsns17.cr.usgs.gov/nedcd. For more information about bulk NED packaging and pricing or to place an order for the entire NED dataset, please contact EDC Customer Services at 800-252-4547. FAX: 605-594-6589. E-mail: custserv@usgs.gov. Contributed by Sheryle Girk-Jackson, sjjackson@usgs.gov.

Geographic Information Systems Poster

The long anticipated revision of the Geographic Information Systems (GIS) poster has arrived and is available at no cost. This is an information-packed, full-color brochure that explains what GIS is, what spatial data is, and how spatial data and analysis through GIS is applied to local and global issues.

What is a GIS? A GIS is a computer system capable of capturing, storing, analyzing, and displaying geographically referenced information; data identified according to location. Practitioners also define a GIS as including the procedures, operating personnel, and spatial data that go into the system.

How does a GIS work? The power of a GIS comes from the ability to relate different information in a spatial context and to reach a conclusion about this relationship. Most of the information we have about the world contains a location reference, placing that information at some point on the globe. The different types of data relating to the location can be entered into a GIS, and the result is important new information that leads to better decision-making. The poster illustrates how GIS is used in such applications as wildlife habitat management, wildfire mitigation, climate change, and reclamation of mining lands.

A GIS can relate information from different sources, capture and integrate the data and make it possible for complex analysis to be performed. The use of a GIS can encourage cooperation and communication among the organizations involved in environmental protection, planning, and resource management. The collection of data for a GIS is costly. Data collection can require very specialized computer equipment and technical expertise. Standard data formats ease the exchange of digital information among users of different systems. Standardization helps to stretch data collection funds further by allowing data sharing, and, in many cases, gives users access to data that they could not otherwise collect for economic or technical reasons.

The poster’s contents are available online at http://mac.usgs.gov/mac/
USGS Geodata Available on DVD

The USGS EROS Data Center (EDC) is now able to distribute more USGS Geodata on Digital Versatile Disc-Recordable (DVD-R) medium. The price for custom geospatial data distributed on DVD-R will include a base charge of $60, the price per file of the selected data, and a $5 handling charge per order. Multiple media orders will incur a single base charge for the higher priced medium. Currently available for DVD-R are DLG’s, DRG’s, and DOQ’s. DEM’s will soon be available.

- DLG: digital vector representations of cartographic information derived from USGS maps and related sources.

<table>
<thead>
<tr>
<th>Prod. Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR01</td>
<td>DRG 7.5'</td>
</tr>
<tr>
<td>TR10</td>
<td>DRG 15'</td>
</tr>
<tr>
<td>TR20</td>
<td>DRG 100K</td>
</tr>
<tr>
<td>TR30</td>
<td>DRG 250K</td>
</tr>
</tbody>
</table>

- DRG: scanned images of a USGS standard series topographic map, including all map collar information.

<table>
<thead>
<tr>
<th>Prod. Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR01</td>
<td>DRG 7.5'</td>
</tr>
<tr>
<td>TR10</td>
<td>DRG 15'</td>
</tr>
<tr>
<td>TR20</td>
<td>DRG 100K</td>
</tr>
<tr>
<td>TR30</td>
<td>DRG 250K</td>
</tr>
</tbody>
</table>

- DOQ: black and white, natural color, or color-infrared images. Most DOQ’s cover an area measuring 3.75’ longitude by 3.75’ latitude at 1:12,000-scale. Alaska DOQ’s are black and white images covering an area 7.5’ longitude by 7.5’ latitude at 1:25,000-scale. In addition, some 7.5’ DOQ’s are available in WA and OR.

<table>
<thead>
<tr>
<th>Prod. Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TU60</td>
<td>¼ quad (3.75’) B&W DOQQ</td>
</tr>
<tr>
<td>TU60</td>
<td>¼ quad (3.75’) CIR DOQQ</td>
</tr>
<tr>
<td>TU61</td>
<td>Full quad (7.5’) DOQ</td>
</tr>
</tbody>
</table>

A single DVD holds: up to 84 black and white 3.75’ DOQ’s, 28 color 3.75’ DOQ’s, or 28 black and white 7.5’ DOQ’s. When both color and black and white DOQ’s are requested in the same order, they will be distributed on separate DVD-R’s.

DORRAN output specs for DVD

- DVRBG (DVD - B/W GEOTIFF)
- ‘DVRBS’ (DVD - BW NATIVE)
- ‘DVRCS’ (DVD - COLOR NATIVE)
- ‘DVRCG’ (DVD - COLOR GEOTIFF)

New USGS Fact Sheets

The following fact sheets have recently been published by the U.S. Geological Survey:

The seventh volume of the Satellite Image Glaciers of the World (Stock #113918, ISBN 9780677982909) is available from The U.S. Geological Survey for $76.00 plus handling. It is titled Satellite Image Glaciers of the World, North America (Professional Paper 1386-J) and is a comprehensive review of historical and ongoing changes in the glaciers of Canada, Mexico and the United States. It references the Landsat image baseline years of 1972-1981. The Glaciers of North America is the result of a collaborative effort between 17 scientists from the USGS, National Park Service, United States and Canadian Universities, the Geological Survey of Canada, and the U.K. (International Glaciological Society). The well-illustrated, 405-page book represents a Department of the Interior contribution to the Bush administration's goal of strengthening the scientific basis of the U.S. Climate Change Science/Global Research Program.

The U.S. Geological Survey has played the lead national and international role in using satellite image data to provide baseline data and other information about glaciers from a global perspective. The long-term monitoring of fluctuations of glaciers, one element of the planet's cryosphere (frozen water part of the Earth system, including glaciers, snow, floating sea, lake, and river ice, and permafrost), provides an important indicator of changes in regional and global climates. Melt-water from shrinking glaciers contributes to the rise in global sea level.

The 11-volume Satellite Image Atlas of the World Task (USGS Professional Paper 1386A-K) involves more than 80 scientists who represent 45 institutions and 25 nations. Seven volumes have been published to date. The Glaciers of South America <http://pubs.usgs.gov/p1386i> was published in 1998. The Glaciers of Alaska (1386-K) is scheduled for publication in 2003. Additional information about the USGS Glacier Studies Project, including other volumes in the series, is available at <http://www.glaciers.er.usgs.gov> or by contacting the Project Chief and senior editor of the series, Richie Williams, at 508-457-2347 or the co-editor, Jane Ferrigno, at 703-648-6360.

For more background information, including URL addresses for the 3 chapters (volumes) currently Web accessible, a new updated USGS Satellite Image Atlas of Glaciers of the World fact sheet can be found at: http://pubs.usgs.gov/factsheet/fs130-02. The 4 previously published volumes (Antarctica: 1386B, Greenland: 1386C, Europe: 1386E and Middle East and Africa: 1386G), are being scanned and will soon be Web accessible. The Glacier Studies Project Web site can be found at http://www.glaciers.er.usgs.gov. Contributed by Sheryle Girk-Jackson, sjjackson@usgs.gov.

Magnetic Anomaly Map of North America

A new U.S. Geologic Survey Special Map of North America is now available for sale. It is titled: Magnetic Anomaly Map of North America and includes a 56"x 40" map and 31 page legend/pamphlet.

This digital Magnetic Anomaly database and map for the North American continent is the result of a joint effort between the Geological Survey of Canada (GSC), U.S. Geological Survey (USGS), and Consejo de Recursos Minerales de Mexico (CRM). The database and map represent a substantial upgrade from the previous compilation of Magnetic Anomaly data for North America, now over a decade old (Zietz, 1982).

The new, upgraded digital magnetic anomaly database and map of North America is a powerful tool for evaluating the structure, geologic processes, and tectonic evolution of the continent and may also be used to help resolve societal and scientific issues that span national boundaries. The map,
which is derived from the digital database, provides a magnetic view of continental-scale trends not available in individual data sets and helps link widely separated areas of outcrop, and unify disparate geologic studies.

Magnetic anomaly data provides a means of "seeing through" nonmagnetic rocks and cover, such as vegetation, soil, desert sands, glacial till, man-made features, and water to reveal lithographic variations and structural features such as faults, folds, and dikes. Magnetic anomalies reflect variations in the distribution and type of magnetic minerals - primarily magnetite - in the Earth's crust.

Understanding the regional geology of the continent can provide information useful for a wide variety of applications such as mineral and energy resource assessments, earthquake and landslide hazard investigations, and hydrologic and environmental studies. Flight-line spacing and elevation above the magnetic sources largely determine the size of the geologic feature that can be resolved with magnetic data.

For more information about this map and other products visit the Web site: http://crustal.usgs.gov/namad/. The map and pamphlet (stock # 113752 for the map, and #113756 for the pamphlet) are available for $7.00 plus $5.00 handling from USGS Information Services, Box 25286, Denver Federal Center, Denver, CO 80225, Tel: 888-ASK-USGS; Fax: 303-202-4693. Contributed by Sheryle Girk-Jackson, sjackson@usgs.gov.

Reference:

National Map Report
The National Academies appointed a committee to review the concept for The National Map developed by the U.S. Geological Survey (USGS) in July, 2002. The study was supposed to review the goals for The National Map and evaluate the approaches described in existing USGS documents to meet these goals, the potential benefits of The National Map to the Nation (e.g., for homeland security) and the role of the USGS as the proposed leader of this effort. Specific concepts to be evaluated were (1) the proposed data characteristics and recommended methods for providing consistent data for these characteristics over areas of arbitrary geographic size or shape from multiple data holdings whose characteristics will vary among sources; (2) the means described in existing USGS documents to encourage widespread use of The National Map through low-cost data in the public domain, and still encourage participation in data maintenance by public, private, and not-for-profit organizations; and (3) the roles described for the USGS and partners, including volunteers, to undertake The National Map project.

Migratory Bird Data Center
Online Mapping
The success of the North American Bird Conservation Initiative (NABCI) and its constituent bird conservation plans in conserving North America's avian diversity requires the application of sound science to meet emerging conservation challenges. Development of the scientific framework for managing bird populations has become increasingly difficult due to outdated data management strategies and the distributed nature of important databases. To begin to address this problem, the U.S. Geological Survey (USGS) and the U.S. Fish and Wildlife Service (FWS) collaborated in establishing the Bird Conservation Node as part of the National Biological Information Infrastructure (NBII). The Bird Conservation Node provides access to bird population and habitat information relevant to population management, conservation planning, and evaluation. In order to make important agency databases available through the Bird Conservation Node, the FWS and USGS formed the Migratory Bird Data Center. Building upon complementary capabilities of the FWS and the USGS, the objectives of this Center are to: (1) assemble and document bird population and habitat data maintained by these...
agencies at their finest levels of spatial and temporal resolution; (2) assure that databases remain current through periodic update; (3) provide Web-based access to the data by researchers and managers for strategic planning and evaluation of avian conservation strategies.

The Migratory Bird Data Center came online in the spring of 2002 through the collaborative efforts of the FWS’s Divisions of Bird Habitat Conservation and Migratory Bird Management, and the USGS Patuxent Wildlife Research Center and Center for Biological Informatics. To demonstrate the utility of the Data Center, visualization and query capabilities have been developed for four important bird population databases. Users can use the online interactive mapping application at http://nbirdims.fws.gov/nbii/. As resources permit, access to additional population and habitat databases will be offered.

National Electronic Disease Surveillance System

The National Electronic Disease Surveillance System (NEDSS) is an initiative that promotes the use of data and information system standards to advance the development of efficient, integrated, and interoperable surveillance systems at federal, state and local levels. This broad initiative is designed to: facilitate the electronic transfer of appropriate information from clinical information systems in the health care industry to public health departments; reduce provider burden in the provision of information; and enhance both the timeliness and quality of information provided. Surveillance Systems collect and monitor data for disease trends and/or outbreaks so that public health personnel can protect the nation’s health.

The vision of NEDSS is to have integrated surveillance systems that can transfer appropriate public health, laboratory, and clinical data efficiently and securely over the Internet. NEDSS will revolutionize public health by gathering and analyzing information quickly and accurately. This will help to improve the nation’s ability to identify and track emerging infectious diseases and potential bioterrorism attacks as well as to investigate outbreaks and monitor disease trends.

The NEDSS Base System is an example of a NEDSS compatible system that can be used by a state health department for the surveillance and analysis of notifiable diseases. The NEDSS Base System provides a platform upon which modules can be built to meet state and program area data needs as well as providing a secure, accurate and efficient way for collecting and processing data.

NIMA to Change Name?

The National Imagery and Mapping Agency has submitted a proposal to President Bush recommending that the administration change the agency’s name to the National Geospatial Intelligence Agency. According to retired Air Force Lt. Gen. James Clapper, the agency’s director, “The proposed new name more accurately captures our mission and what we do, rather than the perpetuation of the legacies of imagery intelligence and geospatial information.” The NIMA moniker has become somewhat outdated and fails to describe the work of the intelligence agency, which is changing.

National Geospatial Intelligence Agency, or NGA, would better reflect the current effort at the agency to link imagery and maps from multiple databases into a “ubiquitous knowledge map,” he said. This map will feature “as much geospatial intelligence data as we can populate, with the users drawing from the sum of these databases.”

NIMA was created in 1996 by merging the former Defense Mapping Agency and several other Defense Department image- and intelligence-gathering arms. Its chief work turns on acquiring and providing the government’s intelligence community with imagery and maps. But as carryover from its disparate parts, NIMA has handled the collection of imagery and maps as separate functions, agency officials said. As NGA, the agency would unify those programs. The proposed name change requires Bush’s approval as well as a law change by Congress. The proposal was first sent to the White House last year as “part of the standard process of submitting legislative proposals and is currently being staffed within the administration.”

The proposal dovetails with a new strategy Clapper released last week to vendors at NIMA’s Industry Day at the Defense Intelligence Analysis Center at Bolling Air Force Base, Washington. That document detailed the agency’s
plan to unify its assets into a series of geographic information systems accessible via Web browser. The strategy introduced the term geospatial intelligence into the lexicon of national security, Clapper said. He defined it as the integration of NIMA's existing imagery and maps into a digital information environment that will be interoperable with other government intelligence systems.

LandView 5

LandView 5 contains selected Census 2000 demographic data from Summary File 1 (SF1) and maps based on the Census 2000 TIGER/Line® files for all states, the District of Columbia and Puerto Rico. These maps show both streets and Census 2000 legal and statistical areas (including Census 2000 Urban/Rural delineations). LandView 5 also contains recent EPA and USGS Geographic Names Information System (GNIS) data and maps.

Users of previous versions of LandView should note that LandView 5 will be limited to the information contained in Census 2000 SF1. This file includes statistical data on the following population items: sex, age, race, Hispanic or Latino origin, household relationship, and household and family characteristics. Housing items include occupancy status and tenure (whether the unit is owner- or renter-occupied). Census 2000 socio-economic data, like education, occupation, income and poverty, were not available for inclusion in LandView 5.

LandView 6, which will be released during the Fall of 2003, will contain selected Summary File 3 data. LandView 5 runs on Windows®98, NT/2000, XP and Macintosh® operating systems. To get "hands-on" experience with this program, a LandView 5 demo and tutorial can be downloaded from http://landview.census.gov/geo/landview/lv5/lv5demo.html.

Because LandView 5 contains 10.4 gigabytes of data, it requires two DVDs (East/West). The two DVD-ROM set is packaged as a single jewel case and sells for $99. To facilitate cross state analysis, Louisiana, Arkansas, Missouri, Iowa, Minnesota are on both the East and West DVDs. Individual states (or state groupings) may be ordered on a custom CD-ROM for $60.00. For those interested in having 1990 and Census 2000 data, the Census Bureau is offering a subscription kit for $125.00 that includes LandView IV (1990 Census) and LandView 5.

The LandView 5 and MARPLOT® software included on this disc were created by agencies of the U.S. Government and are in the public domain. They can be copied, used and distributed freely without the requirement for royalty payments or further permissions. However, the Census Bureau cannot provide technical support for products created by others using LandView.

TranStats Mapping Center

The Bureau of Transportation Statistics' TranStats Mapping Center provides mapping and data download applications that can be used to geographically analyze and retrieve data in the TranStats Data Library and provides access, through a map based download interface, to all transportation geospatial data collected and maintained by the US Department of Transportation. Data available for downloading includes the 2001 and 2002 National Transportation Atlas Databases, and GDT's Dynamap 1000 street download. Mapping applications include: the National Highway System from the Federal Highway Administration, Federal Railroad Administration Grade Crossing Accidents, Highway Performance Monitoring System, Office of Airline Information Market Share, State and Local Government Transportation Revenues and Expenditures and Vehicle Miles Traveled. Information on the mapping applications and data as well as links to individual sites can be found at the TranStats Mapping Center <http://www.transtats.bts.gov/MappingCenter.asp>.

Geospatial One-Stop Program Director Announced

Hank Garie has been named as Director of the Geospatial One-Stop Program. Geospatial One-Stop is one of 24 OMB electronic-government initiatives. The objective of Geospatial One-Stop is: to provide improved utility of and access to data collected by all levels of government; to expand partnerships among Federal, State, and local governments; and to reduce duplication and save money.

Mr. Hank Garie has over 16 years experience in building and coordinating GIS in New Jersey State government and local communities. For the past 4 years, he has been serving as the New Jersey State GIS Coordinator, directing a program that promotes the use of GIS technology and development of statewide spatial
data resources. Hank is a past president of the National State Geographic Information Council (NSGIC), an organization of States committed to efficient and effective government through the adoption of geographic information technology. In addition to practical management and GIS implementation experience at the State level, Hank has worked closely with the Federal Geographic Data Committee (FGDC) and individual Federal agencies to develop and promote strategies for implementing the National Spatial Data Infrastructure (NSDI).

USGS Satellite Images of Earth Debut as Art Prints

Astonishing patterns, vivid abstractions, and fantastic shapes characterize "Earth as Art," a joint USGS and NASA collection of satellite imagery that displays 41 images of Earth taken by the Landsat 7 satellite from over 400 miles high. These graceful portraits of Earth show the most intriguing and illuminating aspects of nature. To do justice to such beauty, fine art prints of these and other selected U.S. Geological Survey (USGS) satellite and aerial images are now available as part of a recently signed cooperative research and development agreement (CRADA) between the USGS and LookClickPrint, Inc. (LCP) of Los Lunas, New Mexico.

Under the CRADA, the USGS and LCP will together make premium-quality reproductions of the "Earth as Art" collection available to public. LCP will be responsible for producing, ordering, processing, and distributing prints from the collection. The USGS contribution will include providing digital files of the collection to LCP along with descriptive information of each individual image.

Combining the skills of a master printer with state-of-the-art digital print technology, LookClickPrint, Inc. (LCP) uses archival inks, paper, and canvass to reproduce many types of images as premium-quality, fine art prints, each displaying rich color and precise detail. LCP offers prints of images from a network of museums - prints related to geography, astronomy, history, nature, sports, as well as traditional art.

USGS will continue to develop and bring to the attention of LCP other digital data and products that could be of interest to LCP customers. Customer response to this initial collection will be a key factor for USGS and LCP to determine what additional USGS images and maps may be suitable for incorporating into LCP's collection.

LCP provides customers with direct access to USGS images and the capability to search and select an image, choose a size, and specify printing on either paper or canvas. Orders are then transmitted across a virtual private network to an LCP printing facility where each print is individually created according to the customer's order and shipped directly to that customer. Prints can be accessed and purchased through http://www.lookclickprint.com/

New California Seismic Hazard Zone Maps

Seven official Seismic Hazard Zone Maps for Alameda and Ventura counties were released February 14, 2003. The maps released are the: Briones Valley, Hunters Point, Oakland East, Oakland West, Richmond, and San Leandro quadrangles in Alameda County and the Saticoy quadrangle in Ventura County.

Six Preliminary Seismic Hazard Zone maps for Los Angeles and Santa Clara counties were released February 14, 2003. The maps released are the: Alpine Butte, Lancaster East, Lancaster West, Little Rock, and Ritter Ridge quadrangles in Los Angeles County and the Santa Teresa Hills quadrangle in Santa Clara County.

Official and Preliminary Seismic Hazard Zone maps can be viewed online at http://gmw.consrv.ca.gov/shmp/index.htm.

New Oregon Maps

The Oregon Department of Geology and Mineral Industries (DOGAMI) recently released four new maps. They are **Geologic Map**

Each map is available on CD-ROM for $10 or $15 for a printed copy of the map, from the Nature of the Northwest Information Center, 800 NE Oregon Street #5, Portland, Oregon 97232. You may also call (503) 872-2750 or order online at http://www.naturenw.org. There is a $3 shipping and handling charge for all mailed items.

New Geologic Maps for Utah

The Utah Geological Survey (UGS) recently published geologic maps of the Harrisburg Junction and Hurricane quadrangles. These two quadrangles straddle the I-15 corridor in east-central Washington County, covering an area of about 110 square miles. The communities of Hurricane, LaVerkin, Toquerville, Leeds, Silver Reef, and the northeast part of the city of Washington are on these maps, as are Quail Creek State Park, the Silver Reef mining district, and the Red Cliffs Recreation Area.

The maps are published in full color at a scale of 1:24,000. Accompanying reports describe the geology of these two quadrangles, including the region's geologic hazards and geologic resources. The maps and reports also explain the fascinating geology of this area and why the landscape looks like it does. The geology of these two quadrangles is wonderfully exposed along the flanks of the Virgin anticline (a long upwarp in the Earth's crust that stretches from Bloomington on the southwest to Leeds on the northeast), and in the Hurricane Cliffs.

The base of the Hurricane Cliffs marks the Hurricane fault zone, a major earthquake fault capable of generating damaging earthquakes; the most recent of which was the 1992 St. George earthquake. This area also contains several cinder cone volcanoes and lava flows that range from about 140,000 to 1,000,000 years old. The contrast of the black lava flows and red rock country is visually stunning, but has also yielded important information about landscape evolution.

These maps were completed as part of a multi-year project to map the geology of the rapidly growing St. George area. The Harrisburg Junction quadrangle is $11.30 and the Hurricane quadrangle is $13.70. Both are available at the Natural Resources Map & Bookstore, located at 1594 West North Temple, Salt Lake City, (888) UTAH MAP, (801) 537-3320, or http://mapstore.utah.gov.

New (NRCS) Digital Orthophoto Quads for Wyoming

The Natural Resources Conservation Service (NRCS), the Bureau of Land Management, and the Wyoming State Engineer's Office recently held a press conference to announce the creation and distribution of a statewide set of high-resolution color infrared digital orthophoto quadrangles (DOQ). The technology will assist in: managing public land, wildlife, and water; identifying new roads, flood plain areas and weed infestations; and depicting conservation practices and the conversion of prime agricultural lands to other uses. The photographs will also be used on the Wind River Indian Reservation to aid in mapping oil and gas drilling. Wyoming's former Governor, Jim Geringer; NRCS State Conservationist Lincoln E. Burton; and NRCS GIS Coordinator Randy Wiggins participated in the press conference to announce the new technology. The aerial photos, now being converted to DOQs and county ortho-mosaics, have a pixel resolution of about 2 feet. Distribution should be made to all Wyoming NRCS field offices within the next 12 months. For more information contact Randy Wiggins, NRCS GIS coordinator, at 307-261-6451, or randy.wiggins@wy.usda.gov.
Western Association of Map Libraries
Microform Publications

Information Bulletin

Occasional Papers

Paper Publications

Occasional Papers
1973 Catalogue of Sanborn Atlases at California State University, Northridge by Gary W. Rees and Mary Hoeber. OP1. LC#73-5773 ISBN 0-939112-01-9 $4.00
1978 Index to Early Twentieth-Century City Plans Appearing in Guidebooks: Baedeker, Mitrehead-Blue Guides, Murray, L.J.G.R., etc., Plus Selected Other Works to Provide Worldwide Coverage of over 2,000 Plans to over 1,200 Communities, Found in 74 Guidebooks by Harold M. Otness. OP4. LC#78-15094 ISBN 0-939112-05-1 $6.00
1980 Index to Nineteenth-Century City Plans Appearing in Guidebooks: Baedeker, Murray, Joanne, Black, Appleton, Meyer, Plus Selected Other Works to Provide Coverage of over 1,800 Plans to Nearly 600 Communities, Found in 164 Guidebooks by Harold M. Otness. OP7. LC#80-24483 ISBN 0-939112-08-6 $6.00
1981 Printed Maps of Utah to 1900; An Annotated Cartobibliography by Riley Moore Moffat. OP8. LC#81-1849 ISBN 0-939112-09-4 $10.00
1986 Map Index to Topographic Quadrangles of the United States, 1882-1940 by Riley Moore Moffat. OP10. LC#84-21984 ISBN 0-939112-12-4 $40.00

Send Check (payable to WAML) or Purchase Order to: Western Association of Map Libraries
Julie Hoff
WAML Book & Sales Manager
Map Collection
Arizona State Library
1700 West Washington
Phoenix, AZ 85007
Phone: (602) 542-4343; Fax: (602) 542-4400