Western Association of Map Libraries

"...to encourage high standards in every phase of organization and administration of map libraries..."
The Western Association of Map Libraries is an independent association of persons. The Membership has defined its Principal Region for meeting locations as: the Provinces of Alberta and British Columbia, and the States of Alaska, Arizona, California, Colorado, Hawaii, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington and Wyoming.

Membership in WAML is open to any individual interested in furthering the purpose of the Association, which is “to encourage high standards in every phase of the organization and administration of map libraries.” Membership includes receipt of all issues of the Information Bulletin and Electronic News & Notes (if an email address is provided), mail announcements of WAML meetings, voting privileges and receipt of WAML ballots.

Dues are US$30 per year and all memberships begin July 1. You may join any time of the year by sending your name, address, phone, fax, email address and US$30 to the WAML Treasurer at the address below. Make checks payable to “WAML” or the “Western Association of Map Libraries.” Lifetime membership is open to any individual for a one-time payment of US$600. In addition to all membership privileges listed above, Lifetime Members also receive a copy of each volume published in the WAML Occasional Paper series. For more information about WAML, its purpose, meetings and membership, see the WAML Web site at http://www.waml.org or contact an officer listed below.

WAML and its Information Bulletin operate on a membership/volume-year basis. Subscriptions begin July 1 and end on June 30 the following year. Mid-year joiners/subscribers will receive back issues for that year. Back issues of the Information Bulletin are available for US$10/volume, or portion thereof, from the Subscription Manager at the address shown below.

Subscriptions to the Information Bulletin are US$35 per volume year. The Information Bulletin is issued three times each year: Issue #1 in November, Issue #2 in March, and Issue #3 in July. In addition to the subscription cost, US$3 is charged for postage to Canada and US$5 is charged for mailing to countries outside of the US and Canada.

WAML Executive Board (July 1, 2002 - June 30, 2003)

President
Richard A. Spohn
3105 Riddle View Lane
Cincinnati, OH 45220
ras@aol.net

Vice President/President Elect
Sue Haffner
CSU-Fresno Library
5200 N. Barton Ave., MS ML34
Fresno, CA 93740-8014
(559) 278-2405
Fax: (559) 278-6952
sue_haffner@csufresno.edu

Secretary
Andrew Nicholson
Map & Aerial Photography Collection
Documents Center
University of Oregon
Knight Library
Eugene, OR 97403-1299
anichols@darkwing.uoregon.edu

Treasurer
Cynthia Jahns
Head, Maps Unit
Science & Engineering Library
University of California-Santa Cruz
1156 High St.
Santa Cruz, CA 95064-1078
(831) 459-3187
Fax: (831) 459-4187
cjahns@cats.ucsc.edu

Past President
Christopher J.J. Thiry
Map Librarian, Arthur Lakes Library
Colorado School of Mines
PO Box 4029
Golden, CO 80401-0029
(303) 273-3697
Fax (303) 273-3199
cthiry@mines.edu

Business Manager
Julie Hoff
WAML Book & Sales Manager
Map Collection
Arizona State Library
1700 West Washington
Phoenix, AZ 85007
(602) 542-4343
Fax: (602) 542-4400

Subscription Manager
Jim O'Donnell
Geology Library 100-23
California Institute of Technology
Pasadena, CA 91125
wamlsubsmgr@yahoo.com
Western Association of Map Libraries

Volume 33, No. 3

INFORMATION BULLETIN

July 2002

Table of Contents

Features and Photoessays

- Preliminary Agenda, WAML Fall Meeting, University of Hawaii, Manoa .. 136
- Minutes of the WAML Spring Meeting, University of California, Santa Barbara by Wendie Helms 138
- WAML Membership ... 140
- Minutes of the Cartographic Users Advisory Council (CUAC), May 2-3, 2002 145
- Atlantis, Illinois: How to Find “Lost Towns” in Illinois by Tom Huber .. 159
- Native American Cartography as told by George William Manly in his account of Westward Migration in Death Valley in ’49 contributed by Peter Stark ... 163

Atlas and Book Reviews edited by Kathy Rankin ... 168

- Getting to Know ArcGIS Desktop reviewed by Megan Dreger; La Gran Linea: Mapping the United States-Mexico Boundary, 1849-1857 reviewed by James R. Curtis; Land Occupancy by the Amerindians of the Canadian Northwest in the 19th Century as Reported by Emile Petitot: Toponomic Inventory, Data Analyses, Legal Implications reviewed by Ronald Whistance-Smith; The Map Library in the New Millenium reviewed by David Deckelbaum; Dictionary of GIS Terminology reviewed by Julie Sweetkind-Singer; Atlas of Oregon reviewed by Ronald Whistance-Smith.

New Mapping of Western North America compiled by Ken Rockwell ... 178

WAML Business

- Editor’s Message ... 132
- President’s Message ... 135

News & Departments

- Benchmarks ... 186
- Canadian News .. 187
- Cataloging News ... 188
- Conferences & Classes .. 189
- Digital Spatial Data ... 190
- Employment ... 214
- General News .. 195
- Internet Resources ... 197
- New Publications .. 177
- Periodical Articles .. 200
- US Federal, State and Local Government News .. 203

Printed in the U.S.A.

US ISSN 0049-7282 © 2002 by The Western Association of Map Libraries LC #72-625238
Editor’s Message

Greetings to WAML Members and Subscribers —

This issue contains articles on locating place names in Illinois by Tom Huber of the Illinois State Library, and cartographic knowledge of Native Americans by Peter Stark. As I have said many times, the IB is a joint effort, and could not continue without everyone’s contributions.

In my last Editor’s message, I stated “This will be my next to last issue as editor of the WAML Information Bulletin.” In the IB Editor’s report that I submitted before the Santa Barbara meeting, I stated that I could not continue to do both the editing and production work on the Information Bulletin. Needless to say, I am deeply concerned about the actions taken by our President to recruit a new editor.

I will be attending the WAML meeting in Hawaii. I look forward to discussing options for continuing the Information Bulletin with the Executive Board and membership. I hope to see you all there.

Linda
Linda Zellmer
lzellmer@indiana.edu
(812)855-7170

The Information Bulletin and WAML Electronic News & Notes are published by the Western Association of Map Libraries as tools for communicating with its Membership and Subscribers; however, opinions expressed in these publications do not necessarily reflect an official Association position.

CONTRIBUTION GUIDELINES FOR THE INFORMATION BULLETIN

Please submit material in electronic form. You may send material via e-mail as an attachment or regular mail (3.5" diskette, PC, Microsoft Word preferred). A file may also be posted on a server where the Editor may download it. Photographs should be black & white glossy prints or digital image files. Please contact the Editor if you have any questions. IB copy deadlines are: September 1 for Issue No. 1, January 1 for Issue No. 2, May 1 for Issue No. 3

FEATURE ARTICLES

Submit contributions and ideas for articles to the IB Editor, Linda Zellmer. These may include, but are not limited to, feature articles about maps and map librarianship, GIS and geospatial data use and services in libraries, mapping agencies, conference reports, historic mapping and future mapping trends, information about a specific map library or collection, map use or user studies, map librarianship training and cartobibliographies. “Something to Make Your Life Easier” features a procedure, handout, Web page or brochure to share that may help other map librarians in their work.

PHOTO ESSAYS

Contributions and ideas for photo essays are accepted by Ross Togashi, Photo Essay Editor.

REVIEWS

Atlas and book reviews and reviews of digital cartographic products, software and data are welcome. Contact the Atlas & Book Review Editor, Kathy Rankin or the Editor, Linda Zellmer. Hardware and Reproduction Technology reviews may be sent to the Micrographics/Technology Editor, Larry Cruse.
CONTRIBUTION GUIDELINES FOR WAML ELECTRONIC NEWS & NOTES

Submit items to the IB Editor, the News & Notes Editor or the appropriate State or Province Editor at any time for inclusion in the WAML Electronic News & Notes. E-N&N is a monthly publication that is compiled and posted on the WAML Web site at (http://www.waml.org). The E-N&N Editor appreciates receiving contributions via e-mail, but accepts regular mail as well. Please flag time-sensitive items in the subject line.

Back issues of WAML E-N&N are also available for viewing at the WAML Web site. Selected WAML E-N&N items also appear in the Information Bulletin.

E-N&N includes the regular feature “New Mapping of Western North America.” Submit citations for new print and digital maps and atlases of the western United States and Canadian Provinces to Ken Rockwell, New Mapping Editor and include ordering information if possible.

Contributions to E-N&N may include people news such as promotions, job changes, retirements and obituaries. Also, cartographic cataloging news, conference/class announcements, job announcements, industry/map dealer news, announcements of new cartographic materials (maps, atlases, data and software, CDs, URLs), citations for articles/special journal issues, preservation news, remote sensing news and agency news are welcomed.

Potential sources for news include: communications with colleagues, listservs (please acknowledge original author and listserv), Web sites (use search engines & search for maps, atlases, cartography, geospatial data, GIS and your state, county or city), automated notification services, journals and newspapers, vendor, publisher and agency catalogs and newsletters and conference announcements.

STATE AND PROVINCE EDITORS

State and Province Editors will accept contributions at any time for their state or province and will forward them for publication. State and Province Editors have volunteered to be especially vigilant for news, notes, ideas for feature State and Province Editors will accept contributions at any time for their state or province and will forward them for publication.

Information Bulletin and Electronic News & Notes

EDITORIAL STAFF

Information Bulletin Editor
Linda Zellmer
Head, Geology Library
Indiana University Libraries
1001 East Tenth Street, Room 601
Bloomington, Indiana 47405-1405
(812) 855-7170
Fax (812) 855-6614
lzellmer@indiana.edu

Atlas & Book Review Editor
Katherine L. Rankin
3189 Brazos St.
Las Vegas, NV 89109-3204
(702) 895-3062
Fax (702) 895-1078
krankin@nevada.edu

New Mapping of Western North America Editor
Ken Rockwell
Marriott Library
University of Utah
Salt Lake City, UT 84103
krockwel@library.utah.edu

Photo Essay Editor
Ross Togashi
Map Collection
University of Hawai‘i Libraries
2550 The Mall
Honolulu, HI 96822
(808) 956-6199
Fax (808) 956-5968
rtogashi@hawaii.edu

Editorial Advisor and Micrographics Technology Editor
Larry Cruse
University Library, C075P
UC San Diego
La Jolla, CA 92093-0175
(619) 534-1248
Fax (619) 534-7548
Larry_Cruse@UCSDLIBRARY.ucsd.edu
State and Provincial Editors

<table>
<thead>
<tr>
<th>State</th>
<th>Editor</th>
<th>Address</th>
<th>Phone</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alaska Editor</td>
<td>John Kawula</td>
<td>Government Documents & Map Librarian</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rasmuson Library</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>University of Alaska</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fairbanks, AK 99775-6800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alberta Editor</td>
<td>Ron Whistance-Smith</td>
<td>Map Collection, Geography Dept.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>University of Alberta</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Edmonton, Alberta T6G 2H4 Canada</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arizona Editor</td>
<td>Dale Steele</td>
<td>Research Division</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arizona Dept of Library, Archives</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1700 W. Washington</td>
<td></td>
<td></td>
</tr>
<tr>
<td>British Columbia Editor</td>
<td>Tim Ross</td>
<td>Map Librarian</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>University of British Columbia Library</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1956 Main Mall</td>
<td></td>
<td></td>
</tr>
<tr>
<td>California Editor</td>
<td>Phil Hoehn</td>
<td>Librarian</td>
<td></td>
<td>philhoehn@juno.com</td>
</tr>
<tr>
<td></td>
<td></td>
<td>David Rumsey Collection</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>51 Levant St.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>San Francisco, CA 94114-1409</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(415) 431-1423</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colorado Editor</td>
<td>Christopher Thiry</td>
<td>Map Librarian</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arthur Lakes Library</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Colorado School of Mines</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Golden, CO 80401-1887</td>
<td>(303) 273-3697</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(303) 273-3199</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ctthiry@mines.edu</td>
<td></td>
</tr>
<tr>
<td>Hawaii/Pacific Rim Editor</td>
<td>Riley Moffat</td>
<td>Division of Learning Resources</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Brigham Young University</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Box 1966</td>
<td>(808) 293-3850</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(808) 293-3877</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>moffrat@byuh.edu</td>
<td></td>
</tr>
<tr>
<td>Idaho Editor - Vacant</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nevada Editor</td>
<td>Linda Newman</td>
<td>DeLaMare Library/MS 262</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>University of Nevada</td>
<td>Reno, NV 89557</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(775) 784-6945 ext. 20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(775) 784-6949</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>lnnewman@unr.edu</td>
<td></td>
</tr>
<tr>
<td>Oregon Editor</td>
<td>Andrew Nicholson</td>
<td>Map & Aerial Photography Collection</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Documents Center</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>University of Oregon</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Knight Library</td>
<td>Eugene, OR 97403-1299</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>anichols@darkwing.uoregon.edu</td>
<td></td>
</tr>
<tr>
<td>Utah Editor - Vacant</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Washington State Editor</td>
<td>Vacant</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Western Editor - Vacant</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wyoming Editor - Vacant</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lists for 2002/03 Membership Year
Committees and Representatives

Executive Board
President: Richard Spohn
Vice President/President Elect: Sue Haffner
Secretary: Andrew Nicholson
Treasurer: Cynthia Jahns
Past President: Christopher J.J. Thiry
Appointees
Archivist - Julie Sweetkind, (2000-)
Business Manager - Julie Hoff (2002 -)
Subscription Manager - Jim O’Donnell, (1997-)
Web Manager – Linda Zellmer (1999-)

Membership/Hospitality Committee
Cynthia Jahns (1998-)
Carol Doyle (2002-)
Yvonne Wilson (2002-)

Nominating Committee
David Deckelbaum (2002 -)
Need additional members

Publications Advisory Committee (PAC)
Phil Hoehn (1999-)
David Deckelbaum (1999-)

Ex Officio:
Linda Zellmer, IB Managing Editor (2000-)
Julie Hoff (2002 -)

PAC Microforms Subcommittee
Larry Cruse (1993-)

Representatives/Liaisons
To AACCCM - Mary Larsgaard (1992-)
To ACMLA - Tim Ross (1991-)
To ALA/MAGERT – Needs representative
To CCISA – Linda Zellmer (1999-)
To CUAC -
 Janet Collins (1996-);
 Christopher J.J. Thiry (1998-)
To GIS - Richard Spohn (1996-)
To IFLA - Barbara Haner (1989-)
To SLA/G&M - Muriel Strickland (1985-)

President’s Message

Greetings WAMLites!

I hope your summer is going well. We in Colorado are fighting fires and trying to avoid the smoke.

I am pleased to announce that Sue Haffner at Cal State Fresno is our new Vice President/President-in-waiting. Andrew Nicholson of the University of Oregon is our new Secretary, and Cynthia Jahns is our new Treasurer.

I, on behalf of WAML, would like to thank David Deckelbaum for his service as President, Wendie Helms for her service as Secretary, and Muriel Strickland as Treasurer. Each has done a great job and helped keep WAML healthy, wealthy, and wise.

As I end my reign as your President, I would like to thank everyone whom I have talked to regarding how to perform my duties.

Good luck to our new El Presidente, Rich Spohn. I look forward to seeing everyone at our 35th Anniversary meeting in sunny Hawaii. Aloha!

—Chris
WAML President
Preliminary Agenda

WAML Fall Meeting
Honolulu, Oahu, Hawaii & Kona, Hawaii

November 5, 2002

• Early Bird Picnic: Ala Moana Beach Park (Magic Island) across Ala Moana Hotel on Ala Moana Blvd

November 6, 2002

• Executive Board Meeting
• Map Cataloging Workshop (Larsgaard)
• Presentations (speakers and topics TBA)
• Waikiki Walking Tour

November 7, 2002

• Presentations (speakers and topics TBA)
• Business Meeting
• Sounding Board
• Banquet (Willows Restaurant)

All meetings will be held at the University of Hawaii at Manoa, Campus Center

November 8, 2002

• Big Island Field Trip. Mauna Kea Astronomy Tour, estimated $60, not including hotel and airfare to Kona. Tour begins with pick-up at the King Kamehameha’s Kona Beach Hotel, 9:30 a.m.

November 9, 2002

• Kona optional tour (details forthcoming)
*Air travel to Kona (November 8) We encourage everyone to fly together to Kona on Hawaiian Airlines flight #104. You may purchase discount airline coupons through us (this option will be indicated on the conference registration form). Or you may make your own arrangements getting from Honolulu to Kona; check with your travel agent on the common fare to Honolulu and Kona. Please plan on arriving in Kona no later than 8:30 a.m. in order to meet the tour. Recommended flight times from Honolulu to Kona are:

- Hawaiian Airlines (partners: American Airlines, Continental Airlines, Northwest Airlines) Leave 7:35 a.m. Arrive 8:18 a.m. Flight #104
- Aloha Airlines (partner: United Airlines) Leave 7:50 a.m. Arrive 8:30 a.m. Flight #36

Shuttle service to the hotel will be arranged.

Hotel Reservations: ask for reservations under group name Western Association of Map Libraries

Ala Moana Hotel (available November 4 - 9, 2002)
410 Atkinson Drive, Honolulu, Hawaii 96814-4722
Phone: (808) 955-4811 (Fax: (808) 944-2974)
http://www.alamoanahotel.com
Daily room rates: Mountain view: Single/Double $89 Triple $114
 (plus 4.16% state excise tax and 7.25% hotel room tax)

King Kamehameha’s Kona Beach Hotel (available November 8 – 10, 2002)
75-5660 Palani Road
Kailua-Kona, Hawaii 96740
Phone: (808) 329-2911
http://www.konabeachhotel.com/
Daily room rate: Single/Double $99 plus 4.16% state tax and 7.25% hotel room tax
* Porterage $5.20: we suggest adding porterage service since the rooms may not be available at the time of arrival (around 9:00 a.m.) and the return from the field trip will be late evening (approx. 10:30 p.m.). With porterage, your luggage will be placed in your room as well as picked up at check out

A complete description of the program and field trip(s) will be announced as soon as the details are finalized. The registration form with fees and other costs will be available by mid-August. If there are any questions in the meantime, please contact Mabel Suzuki by e-mail (mabel@hawaii.edu); telephone: (808) 956-2551; fax (808) 956-5968 or mail c/o Government Documents and Maps Department, 2550 The Mall, Honolulu, HI 96822.
Minutes of the
WAML Spring 2002 Meeting
University of California
Santa Barbara
Goleta, California
March 21, 2002

Present: David Deckelbaum, Wendie Helms, Cynthia Jahns, Dorothy McGarry, Jim O'Donnell, Katherine Rankin, Muriel Strickland, Christopher Thiry. Present for part of meeting: Larry Cruse; John Stevens; Mabel Suzuki.

The WAML Executive Board Meeting was called to order by President Chris Thiry at 9:20 a.m., March 21, 2002 in the Davidson Library, University of California, Santa Barbara.

John Stevens informed the board that the Internal Revenue Service had dropped WAML from the list of tax exempt organizations. He gave us reasons why WAML qualifies for tax exempt status. The Board voted to appoint John Stevens to negotiate with the IRS on WAML’s behalf. The secretary will write John a letter to legitimize him as our representative in reinstating WAML of its status.

Mabel Suzuki from the University of Hawaii Manoa Library announced plans for the Fall 2002 WAML meeting in Hawaii, for November 6-9, 2002. She will deliver this information to the WAML conference attendees at the Business Meeting.

The Treasurer’s Report was given by Muriel Strickland. She handed out the financial statement and reported on income and expenses. There was discussion on the duties of the WAML treasurer.

Chris Thiry announced that Julie Hoff will be appointed the new Business Manager, replacing Richard Soares as of July 1, 2002.

Subscription Manager’s report: Jim O’Donnell reported that vendors are responding well to email. There are 158 paid subscriptions.

The Membership/Hospitality Committee report was given by Cynthia Jahns. She announced the name of a new committee member.

I.B. Editor’s Report: Linda Zellmer was not able to attend this meeting.

Vice President’s Report: Rich Spohn was not able to attend this meeting.

Past President, David Deckelbaum encouraged the board to lobby for nominees for candidates for positions on the WAML board. We should make sure we have liaisons for all meetings also.

Katharine Rankin, Book Review Editor, gave a report.

Publications Committee: Several ideas for publishing were discussed: A history of WAML; Russian historical maps; Scan 1:250,000 maps of the West; and other ideas.

New business: We discussed scanning Information Bulletins and putting the files on CD-ROMs for easier backfiling. Perhaps other o.p. publications can be scanned.

The meeting adjourned at 11:40 a.m.

Respectfully submitted,
Wendie Helms
Business Meeting
WAML 2002 Spring Meeting
University of California,
Santa Barbara
Goleta, California
March 22, 2002

The Business meeting was called to order by President Chris Thiry at 2:15 p.m.

Secretary, Wendie Helms, summarized the Executive Board Meeting minutes.

Treasurer Muriel Strickland presented the Financial Report. She reported that we are in better shape than last year. There is $20,500. In the checking account.

Chris Thiry discussed future meeting locations in the absence of Vice President, Rich Spohn. Spring, 2004 is open ... then we are four years away from the next empty slot.

Mabel Suzuki reported on plans for the WAML Fall 2002 Hawaii conference scheduled for November 6 - 9. November 6-7 will be in Honolulu; November 8-9 will be on the Kona side of the Big Island of Hawaii. She, Ross Togashi and Riley Moffat are meeting to plan it. The Ala Moana Hotel is their choice for the conference hotel at Honolulu. King Kamehameha Beach Resort is their choice for Hawaii. They are hoping to have a field trip to the Keck Observatory. Mabel counted 15 people raising their hands when she requested a count of those planning to attend.

Chris announced the appointment of Julie Hoff as Business Manager beginning July 1, 2002.

Jim O'Donnell gave the Subscription Manager's report. There are 158 subscriptions to the Information Bulletin. Three-fourths of those are in the U.S.

I.B. Editor's Report: Chris informed the group that Linda Zellner has moved from Arizona State University to her new position as Head of the Geology Library at Indiana University. We don't have a firm answer yet on when she will give up her duties as IB Editor or WAML webmaster. The IB is a prestigious journal, and the only map librarianship journal still in existence.

Archivist report: Julie Sweetkind-Singer reminded WAML members to send her anything she is responsible for archiving. She will keep them for the required time. The WAML web page has guidelines posted.

Liaison Reports

David Deckelbaum asked if there any volunteers to update our liaison representation.

AACCM: Mary Larsgaard reported. AACR2 2nd ed. changes have taken two years getting through committee. Changes will come out in July. WAML & MAGERT paid for Mary's airfare to London for the meeting.

ACMLA: No WAML representatives attended.

ALA – MAGERT: Mary Larsgaard reported that she will be giving an update on new cataloging rules at ALA in June, 2002 in Louisiana. There will also be a presentation on GIS in the Library.

CCISA: No one attended. It was stated that we should get rid of this category.

CUAC: Chris Thiry reported there will be a meeting the first week in May. A report will come out at the end of June. John Kawula volunteered for Depositry Council.

GIS: The next meeting will be at the end of October, 2002 in Denver. In Boston, November, 2001, Christy Jensen gave a presentation on finding lost Open-File Reports on the Internet. John Kawula did a poster session. Also at this meeting, the Serial Set was mentioned as a source for historical geoscience information.

IFLA: Dorothy McGarry reported on the Section of Geography and Map Libraries. David McQuillan has been re-elected as chair. In the last meeting there were changes to the international working group. The next meeting will be in Glasgow in mid-August.

SLA: Dorothy McGarry reported. At the upcoming Los Angeles convention, the Geography and Map Division has field trips planned. The meetings will be worth your while.

ESRI Education Conference: There were 450 at the last conference. Highlights included hands-on sessions in Arc Catalog. The next conference will be July 6-7, 2002 in San Diego.

Announcements

The Membership Committee welcomes Carol Doyle and Yvonne Wilson to its ranks.

David Deckelbaum will be CUAC representative. Candidates are needed for new elections this year.

Old Business / New Business

Jim O'Donnell will scan and keep digital copies of Information Bulletin backfiles to print as needed.

Publications: We are looking for authors to write a History of WAML for our 35th anniversary.
We discussed ideas for sales: more lapel pins? It is difficult to print all the dates of WAML meetings on a t-shirt. The Business Meeting ended at 4:00 p.m.

Respectfully submitted,
Wendie Helms

WAML Spring Meeting, 2002, University of California, Santa Barbara Attendees, Business Meeting

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
<th>E-Mail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greg Armento</td>
<td>CSU, Long Beach</td>
<td>garmento@csulb.edu</td>
</tr>
<tr>
<td>Sylvia Bender</td>
<td>California Energy Commission</td>
<td>sbender@energy.state.ca.us</td>
</tr>
<tr>
<td>Larry Cruse</td>
<td>UCSD</td>
<td>lcruse@ucsd.edu</td>
</tr>
<tr>
<td>David Deckelbaum</td>
<td>University of California, Los Angeles</td>
<td>ddeckelb@library.ucla.edu</td>
</tr>
<tr>
<td>Carol Doyle</td>
<td>Fresno State</td>
<td>carol_doyles@csufresno.edu</td>
</tr>
<tr>
<td>Megan Dreger</td>
<td>San Diego State University</td>
<td>mdreger@mail.sdsu.edu</td>
</tr>
<tr>
<td>Brian Ebersole</td>
<td>Claremont Colleges</td>
<td>brian.ebersole@libraries.claremont.edu</td>
</tr>
<tr>
<td>Barbara Haner</td>
<td>University of California, Los Angeles</td>
<td>bhaner@library.ucla.edu</td>
</tr>
<tr>
<td>Wendie Helms</td>
<td>University of California, Riverside</td>
<td>wendie@citrus.ucr.edu</td>
</tr>
<tr>
<td>Jane Ingalls</td>
<td>Branner Library, Stanford CA</td>
<td>jingalls@stanford.edu</td>
</tr>
<tr>
<td>Cynthia Jahns</td>
<td>University of California, Santa Cruz</td>
<td>cjahns@cats.ucsc.edu</td>
</tr>
<tr>
<td>John Kawula</td>
<td>University of Alaska</td>
<td>fjdk@uaf.edu</td>
</tr>
<tr>
<td>Katie Lage</td>
<td>Map Room, S&E Library UCSC</td>
<td>lage@cats.ucsc.edu</td>
</tr>
<tr>
<td>Mary L. Larsgaard</td>
<td>UCSB library, SB CA 93106</td>
<td>mary@library.ucsb.edu</td>
</tr>
<tr>
<td>Dorothy McGarry</td>
<td>University of California, Los Angeles</td>
<td>dmcgarry@library.ucla.edu</td>
</tr>
<tr>
<td>Jeff Morehead</td>
<td>UCLA</td>
<td>jdm@library.ucla.edu</td>
</tr>
<tr>
<td>Klaus Neudorf</td>
<td>Oregon State Dept. Geol. & Min. Ind.</td>
<td>klaus.neudorf@dogami.state.or.us</td>
</tr>
<tr>
<td>Linda Newman</td>
<td>University of Nevada, Reno</td>
<td>lnewman@UNR.edu</td>
</tr>
<tr>
<td>Andrew Nicholson</td>
<td>University of Oregon</td>
<td>anichols@darkwing.uoregon.edu</td>
</tr>
<tr>
<td>Jim O’Donnell</td>
<td>Cal Tech</td>
<td>jimodo@caltech.edu</td>
</tr>
<tr>
<td>Katherine Rankin</td>
<td>University of Nevada, Las Vegas</td>
<td>krankin@unlv.edu</td>
</tr>
<tr>
<td>Ken Rockwell</td>
<td>University of Utah</td>
<td>krankin@ccmail.nevada.edu</td>
</tr>
<tr>
<td>Bruce Sarjeant</td>
<td>Texas Tech. University</td>
<td>ken.rockwell@library.utah.edu</td>
</tr>
<tr>
<td>Muriel Strickland</td>
<td>San Diego Historical Society</td>
<td>bsarjeant@lib.TTU.edu</td>
</tr>
<tr>
<td>Rosemary Stretfeld</td>
<td>WSU, Pullman WA</td>
<td>Mstricklandsd@cs.com</td>
</tr>
<tr>
<td>Mabel Suzuki</td>
<td>Univ. of Hawaii-Manoa</td>
<td>streatfe@wsu.edu</td>
</tr>
<tr>
<td>Lisa Sweeney</td>
<td>Rice Univ. Houston.TX</td>
<td>mabel@hawaii.edu</td>
</tr>
<tr>
<td>Julie Sweetkind-Singer</td>
<td>Stanford</td>
<td>sweetkind@stanford.edu</td>
</tr>
<tr>
<td>Chris J.J. Thiry</td>
<td>Colorado School of Mines</td>
<td>cthiry@mines.edu</td>
</tr>
<tr>
<td>Elisabeth Filar Williams</td>
<td>University of Colorado Boulder</td>
<td>filar@colorado.edu</td>
</tr>
<tr>
<td>Yvonne Wilson</td>
<td>University of California, Irvine</td>
<td>ymwilson@lib.ucr.edu</td>
</tr>
</tbody>
</table>
WAML Membership
2001-2002

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
<th>Email Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>John M. Anderson</td>
<td>Louisiana State University</td>
<td>janders@lsu.edu</td>
</tr>
<tr>
<td>Ellen Calhoun</td>
<td>Rutgers University</td>
<td>calhoun@rci.rutgers.edu</td>
</tr>
<tr>
<td>Gary M. Croft</td>
<td>San Jose State Univ. MLIS/Fullerton</td>
<td>garycroft@earthlink.net</td>
</tr>
<tr>
<td>Paige G. Andrew</td>
<td>Penn State University</td>
<td>pga@psuiias.psu.edu</td>
</tr>
<tr>
<td>Michael Carpenter</td>
<td>Louisiana State University</td>
<td>lscarp@lsu.edu</td>
</tr>
<tr>
<td>Joe Crotts</td>
<td>California State University Chico</td>
<td>jcrots@csuchico.edu</td>
</tr>
<tr>
<td>Judy Andrews</td>
<td>Portland State University</td>
<td>andrewsj@pdv.edu</td>
</tr>
<tr>
<td>Larry G. Carver</td>
<td>University of California Santa Barbara</td>
<td>carver@sdc.ucsb.edu</td>
</tr>
<tr>
<td>Larry Cruse</td>
<td>University of California San Diego</td>
<td>larry@library.ucsd.edu</td>
</tr>
<tr>
<td>Greg Armento</td>
<td>California State Univ. Long Beach</td>
<td>garmento@csulb.edu</td>
</tr>
<tr>
<td>James B. Case</td>
<td>Technical Editor, Photogrammetric</td>
<td>jimcase@netutah.com</td>
</tr>
<tr>
<td>George R. Dalphin</td>
<td>Albany, OR</td>
<td>none given</td>
</tr>
<tr>
<td>Dennis W. Baird</td>
<td>University of Idaho</td>
<td>dbaird@uidaho.edu</td>
</tr>
<tr>
<td>Amy Ciccone</td>
<td>University of Southern California</td>
<td>aciccone@usc.edu</td>
</tr>
<tr>
<td>Harry O. Davis</td>
<td>Southern Illinois University</td>
<td>hdavis@lib.siu.edu</td>
</tr>
<tr>
<td>Sylvia Bender</td>
<td>California Energy Commission</td>
<td>sbender@energy.state.ca.us</td>
</tr>
<tr>
<td>David A. Cobb</td>
<td>Harvard University</td>
<td>cobb@fas.harvard.edu</td>
</tr>
<tr>
<td>David Deckelbaum</td>
<td>University of California Los Angeles</td>
<td>ddeckelb@library.ucla.edu</td>
</tr>
<tr>
<td>NBC</td>
<td>USGS Reston</td>
<td>nblair@usgs.gov</td>
</tr>
<tr>
<td>Bill Cohen</td>
<td>Haworth Press</td>
<td>mkoch@haworthpressinc.com</td>
</tr>
<tr>
<td>Charlotte R.M. Derksen</td>
<td>Stanford University</td>
<td>cderksen@stanford.edu</td>
</tr>
<tr>
<td>Nancy Blair</td>
<td>Lunar & Planetary Institute</td>
<td>bigwood@lpi.usra.edu</td>
</tr>
<tr>
<td>David A. Coombs</td>
<td>Southwest Missouri State University</td>
<td>Jmcoombs@smsu.edu</td>
</tr>
<tr>
<td>Jennie Diens</td>
<td>University of Kansas</td>
<td>jdiens@ukans.edu</td>
</tr>
<tr>
<td>Randal S. Brandt</td>
<td>University of California Berkeley</td>
<td>rbrandt@library.berkeley.edu</td>
</tr>
<tr>
<td>James A. Creaser</td>
<td>University of California Berkeley</td>
<td>jcreaser@library.berkeley.edu</td>
</tr>
<tr>
<td>Rebecca Burke</td>
<td>Arizona State University</td>
<td>rebecca.burke@asu.edu</td>
</tr>
<tr>
<td>Anna J. Dindal</td>
<td>Amherst, MA</td>
<td></td>
</tr>
<tr>
<td>Mary H. Douglass</td>
<td>Seattle Public Library</td>
<td>mary.douglass@spl.org</td>
</tr>
<tr>
<td>Name</td>
<td>Institution/Position</td>
<td>Email Address</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Sheila Dowd</td>
<td>Univ. of California Berkeley - retired</td>
<td></td>
</tr>
<tr>
<td>Carol D. Doyle</td>
<td>California State University Fresno</td>
<td>carol_doyle@csufresno.edu</td>
</tr>
<tr>
<td>Megan Dreger</td>
<td>San Diego State University</td>
<td></td>
</tr>
<tr>
<td>Marie Dvorzak</td>
<td>University of Wisconsin Madison</td>
<td>mdvorzak@library.wisc.edu</td>
</tr>
<tr>
<td>Brian Ebersole</td>
<td>Claremont Colleges</td>
<td>bebersole@rocky.claremont.edu</td>
</tr>
<tr>
<td>Jane Ely</td>
<td>Bellevue, WA</td>
<td>janefely@yahoo.com</td>
</tr>
<tr>
<td>Beth Filar</td>
<td>University of Colorado</td>
<td>filar@colorado.edu</td>
</tr>
<tr>
<td>Adonna Fleming</td>
<td>University of Northern Colorado</td>
<td>acflemi@unco.edu</td>
</tr>
<tr>
<td>Cheri Folkner</td>
<td>University of California Los Angeles</td>
<td>cfolkner@library.ucla.edu</td>
</tr>
<tr>
<td>Frank A. Friedman</td>
<td>Robesonia, PA</td>
<td></td>
</tr>
<tr>
<td>Katherine Frohmberg</td>
<td>University of California Berkeley</td>
<td>katie@library.berkeley.edu</td>
</tr>
<tr>
<td>Mary Gahneder</td>
<td>University of Wisconsin-Madison</td>
<td>gahneder@uwmadmail.services.wisc.edu</td>
</tr>
<tr>
<td>Julia M. Gelfand</td>
<td>University of California Irvine</td>
<td>jegelfand@uci.edu</td>
</tr>
<tr>
<td>Miriam Glanz</td>
<td>University of Arizona Library Student</td>
<td>Dreamworker@earthlink.net</td>
</tr>
<tr>
<td>Richard Grapes</td>
<td>BYUUniversity</td>
<td>Rick_Grapes@BYU.edu</td>
</tr>
<tr>
<td>Gerald L. Greenberg</td>
<td>USGS Menlo Park/Research volunteer</td>
<td>w6ern@earthlink.net</td>
</tr>
<tr>
<td>David R. Gunther</td>
<td>Rancho Cucamonga, CA</td>
<td>guntherdr@hotmail.com</td>
</tr>
<tr>
<td>Russell Guy</td>
<td>Omni Resources, Inc.</td>
<td>custserv@omnimap.com</td>
</tr>
<tr>
<td>Susanne A. Hafner</td>
<td>California State University Fresno</td>
<td>sue_hafner@csufresno.edu</td>
</tr>
<tr>
<td>Edward J. Hall</td>
<td>Kent, OH</td>
<td>ehargle@aol.com</td>
</tr>
<tr>
<td>Barbara Haner</td>
<td>University of California Los Angeles</td>
<td>bhaner@library.ucla.edu</td>
</tr>
<tr>
<td>Joanne Hansen</td>
<td>Eastern Michigan University</td>
<td>lib_hansen@online.emich.edu</td>
</tr>
<tr>
<td>Edward L. Hart</td>
<td>Oakland, CA</td>
<td>veloed@aol.com</td>
</tr>
<tr>
<td>Wendy Helms</td>
<td>University of California Riverside</td>
<td>wendie@citrus.ucr.edu</td>
</tr>
<tr>
<td>Alfred A. Herman</td>
<td>Library of Congress - Retired</td>
<td>alfredherman@hotmail.com</td>
</tr>
<tr>
<td>Philip Hoehn</td>
<td>San Francisco, CA</td>
<td>philhoehn@juno.com</td>
</tr>
<tr>
<td>Julie Hoff</td>
<td>Arizona State Library & Archives</td>
<td>jhoff@lib.az.us</td>
</tr>
<tr>
<td>Leta Hunt</td>
<td>University of Southern California</td>
<td>lihunt@usc.edu</td>
</tr>
<tr>
<td>Robert H. Huxford</td>
<td>Washington Dept. of Natural Resources</td>
<td>bhux490@wadnr.gov</td>
</tr>
<tr>
<td>Jane Ingalls</td>
<td>Stanford University</td>
<td>jingalls@stanford.edu</td>
</tr>
<tr>
<td>LaVonne Jacobson</td>
<td>San Francisco State University</td>
<td>lavonne@sfsu.edu</td>
</tr>
<tr>
<td>Cynthia Jahns</td>
<td>University of California Santa Cruz</td>
<td>cjahns@cats.ucsc.edu</td>
</tr>
<tr>
<td>Janet Jenks</td>
<td>California Institute of Technology</td>
<td></td>
</tr>
<tr>
<td>Elena Jensen</td>
<td>Santa Monica, CA</td>
<td></td>
</tr>
<tr>
<td>David L. Jones</td>
<td>University of Alberta</td>
<td>david.jones@ualberta.ca</td>
</tr>
<tr>
<td>Jan Jorgensen</td>
<td>Central Washington University</td>
<td>jorgenja@cwu.edu</td>
</tr>
<tr>
<td>Nancy A. Kandoian</td>
<td>New York Public Library</td>
<td>nkandoian@nypl.org</td>
</tr>
<tr>
<td>John Kawula</td>
<td>University of Alaska</td>
<td>ffjdk@uaf.edu</td>
</tr>
<tr>
<td>Bob Knecht</td>
<td>Kansas State Historical Society</td>
<td>koalas@networkplus.com</td>
</tr>
<tr>
<td>Donna Koepf</td>
<td>Harvard University</td>
<td>koepf@fas.harvard.edu</td>
</tr>
</tbody>
</table>
Christine Kollen
University of Arizona
kollen@u.library.arizona.edu

Glén McLaughlin
Venture Leasing Associates
vla@ix.netcom.com

Michael Noga
Mass. Institute of Technology
mnoga@mit.edu

Peter Kraus
University of Utah
pkraus@library.utah.edu

David C. McQuillan
University of South Carolina
davidmcq@sc.edu

Jim O'Donnell
California Institute of Technology
jimodo@caltech.edu

Kathryn Lage
University of California Santa Cruz
klage@cats.ucsc.edu

Roseanna Miller
Tempe, Az

Hillery Oberle
Arizona State University
hillery.oberle@asu.edu

Larry W. Laliberte
CIER Winnipeg

Roy Minnick
FATCO
rminnick@firstam.com

Anita K. Oser
Western Carolina University
aoser@wcu.edu

Mary L. Larsgaard
University of California Santa Barbara
mary@library.ucsb.edu

Riley Moffat
Brigham Young University-Hawaii
moffatt@byuh.edu

Philip J. Panum
Denver Public Library
ppanum@denver.lib.co.us

Carol LaRussa
University of California Davis
cjarussa@ucdavis.edu

Jeffrey D. Morehead
University of California Los Angeles
jdm@library.ucla.edu

Matthew Parsons
University of Washington
parsonsm@u.washington.edu

Diane Murray Lightwood
Parametrix, Inc.
dlightwd@wolfenet.com

Page Mosier
USGS Menlo Park
mpmosier@usgs.gov

Joanne M. Perry
Pennsylvania State University
jup4@psuilias.psu.edu

David Lundquist
University of California Davis
dalundquist@ucdavis.edu

Jennifer Stone Muilenberg
University of Washington
jnstone@u.washington.edu

Charles B. Peterson III
Library of Congress

Eugene Majerowicz
Los Angeles, CA

Stephen Mullin
El Cerrito, CA
smullin@uclink4.berkeley.edu

Katherine L. Rankin
University of Nevada Las Vegas
krankin@ccmail.nevada.edu

Elizabeth U. Mangan
Retired, Library of Congress
emangan@earthlink.net

Mary Murphy
McLean, VA

Barbara Rapoport
California Institute of Technology
barbarar@ucla.edu

Connie J. Manson
Washington Div. of Geology & Earth Resources
connie.manson@wadnr.gov

Klaus Neuendorf
Oregon Dept. of Geology & Mineral Industries
klaus.neuendorf@state.or.us

Ken Rockwell
University of Utah
ken.rockwell@library.utah.edu

Carol Marley
McGill University
marley@felix.geog.mcgill.ca

Linda P. Newman
University of Nevada Reno
lnewman@unr.edu

Stephen Rogers
Ohio State University
ruggns.20@osu.edu

Dorothy McGarry
University of California Los Angeles
dmcgarry@library.ucla.edu

Andrew Nicholson
University of Oregon
anichols@darkwing.uoregon.edu

Tim Ross
University British Columbia
timross@interchange.ubc.ca
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bruce Sarjeant</td>
<td>Texas Tech</td>
<td>bsarjean@lib.ttu.edu</td>
</tr>
<tr>
<td>Rosemary Streatfeild</td>
<td>Washington State University</td>
<td>streafte@wsu.edu</td>
</tr>
<tr>
<td>Donald C. Tuttle</td>
<td>Humboldt County Dept. of Public Works</td>
<td>dtuttle@co.humboldt.ca.us</td>
</tr>
<tr>
<td>Robert L. Sathrum</td>
<td>Humboldt State University</td>
<td>rls2@axe.humboldt.edu</td>
</tr>
<tr>
<td>Muriel Strickland</td>
<td>San Diego, CA</td>
<td>mstricklandsd@cs.com</td>
</tr>
<tr>
<td>Ronald Whistance-Smith</td>
<td>Edmonton, AB</td>
<td>rwhistan@compusmart.ab.ca</td>
</tr>
<tr>
<td>Sally J. Scott</td>
<td>University of Wyoming</td>
<td>sscott@uwyo.edu</td>
</tr>
<tr>
<td>Cheryl L. Sund</td>
<td>USGS Denver</td>
<td>csund@usgs.gov</td>
</tr>
<tr>
<td>Yvonne Wilson</td>
<td>University of California Irvine</td>
<td>ymwilson@uci.edu</td>
</tr>
<tr>
<td>Daniel T. Seldin</td>
<td>Indiana University</td>
<td>seldin@indiana.edu</td>
</tr>
<tr>
<td>Susan Sundquist</td>
<td>University of California Los Angeles</td>
<td>ssundqui@library.ucla.edu</td>
</tr>
<tr>
<td>Cheryl Wilson</td>
<td>New Mexico State University</td>
<td>chwilson@lib.nmsu.edu</td>
</tr>
<tr>
<td>Jane C. Selvar</td>
<td>San Diego Public Library</td>
<td>UES@library.sanet.gov</td>
</tr>
<tr>
<td>Mabel Suzuki</td>
<td>University of Hawaii</td>
<td>mabel@hawaii.edu</td>
</tr>
<tr>
<td>Elizabeth Winroth</td>
<td>Oregon Historical Society</td>
<td>lizw@ohs.org</td>
</tr>
<tr>
<td>Emily Shen-Torbik</td>
<td>USGS Menlo Park</td>
<td>eshen-torbik@USGS.gov</td>
</tr>
<tr>
<td>Irene Sweetkind</td>
<td>Cochiti, NM</td>
<td>isweetkind@aol.com</td>
</tr>
<tr>
<td>Kathryn Womble</td>
<td>California State Library</td>
<td>kwomble@library.ca.gov</td>
</tr>
<tr>
<td>Vlad Shkurkin</td>
<td>San Pablo, CA</td>
<td>shkurkin@ix.netcom.com</td>
</tr>
<tr>
<td>Juliet K. Sweetkind-Singer</td>
<td>Stanford University</td>
<td>sweetkind@stanford.edu</td>
</tr>
<tr>
<td>Alberta Auringer Wood</td>
<td>Memorial Univ. of Newfoundland</td>
<td>awood@mun.ca</td>
</tr>
<tr>
<td>Richard E. Soares</td>
<td>California State University Chico</td>
<td>wamlohares@hotmail.com</td>
</tr>
<tr>
<td>Michael Swift</td>
<td>California State University Northridge</td>
<td>michael.swift@csun.edu</td>
</tr>
<tr>
<td>Frances Woodward</td>
<td>University of British Columbia</td>
<td>franwood@interchange.ubc.ca</td>
</tr>
<tr>
<td>Richard A. Spohn</td>
<td>Retired</td>
<td>ras@ao.net</td>
</tr>
<tr>
<td>Suzanne N. Taylor</td>
<td>Colorado State University</td>
<td>staylor@manta.colostate.edu</td>
</tr>
<tr>
<td>Thomas Y. Yeh</td>
<td>Central Washington University</td>
<td>yeht@cwu.edu</td>
</tr>
<tr>
<td>Peter Stark</td>
<td>Library of Congress</td>
<td>psta@loc.gov</td>
</tr>
<tr>
<td>Christopher J.J. Thiry</td>
<td>Colorado School of Mines</td>
<td>cthiry@mines.edu</td>
</tr>
<tr>
<td>Priscilla Chan Tsang Kwok Yu</td>
<td>University of Hong Kong</td>
<td>hragtky@hkucc.hku.hk</td>
</tr>
<tr>
<td>Dale Steele</td>
<td>AZ Transportation Research Center</td>
<td>dsteele@dot.state.az.us</td>
</tr>
<tr>
<td>Bryn Thomas</td>
<td>Charlotte & Mecklenburg Public Library</td>
<td>bthomas@plcmc.org</td>
</tr>
<tr>
<td>Linda R. Zellmer</td>
<td>Indiana University</td>
<td>Iuellmer@indiana.edu</td>
</tr>
<tr>
<td>Stanley Stevens</td>
<td>Santa Cruz, CA</td>
<td>sstevens@scilibx.ucsc.edu</td>
</tr>
<tr>
<td>Thelma B. Thompson</td>
<td>University of New Hampshire</td>
<td>thimat@cisunix.unh.edu</td>
</tr>
<tr>
<td>Robert W. Stewart</td>
<td>Asbury Park Public Library</td>
<td>rstewart@asburypark.lib.nj.us</td>
</tr>
<tr>
<td>Ross Togashi</td>
<td>University of Hawaii</td>
<td>rtogashi@hawaii.edu</td>
</tr>
</tbody>
</table>
Minutes of the Cartographic Users Advisory Council (CUAC)
May 2-3, 2002
US Forest Service, Washington, D.C.

CUAC Representatives:
Janet Collins, Western Washington University (WAML)
Mike Furlough, University of Virginia (MAGERT)
Donna Koepp, University of Kansas (GODORT)
Clara P. McLeod, Washington University (GIS)
Bruce Obenhaus, Virginia Tech (SLAG&M)
Daniel T. Seldin, Indiana University (NACIS)
Paul Stout, Ball State University (NACIS)
Christopher J. J. Thiry, Colorado School of Mines (WAML)
Mark Thomas, Duke University (MAGERT)
Linda Zellmer, Indiana University (GIS)

Attendees:
Betsy Banas (National Forest Service)
Susan J. DeLost (National Forest Service)
Dan Cavanaugh (US Geological Survey)
Wim Danielson (Government Printing Office (GPO))
Howard Danley (National Oceanic & Atmospheric Administration)
Mark Flood (National Forest Service)
John Hebert (Library of Congress)
Robin Haun-Mohamad (GPO)
Betty Jones (GPO)
Vi Moorhouse (GPO)
Jim Lusby (National Imagery and Mapping Agency)
John Moeller (Federal Geographic Data Committee)
Richard H. Smith (National Archives & Records Administration)
Timothy Trainor (U.S. Census Bureau)
Doug Vandegraff (Fish & Wildlife Service)
Chip Woodward (Map Cataloger, GPO)

Agenda
8:30-8:40 Welcome and introductions
8:40-9:30 CUAC Presentation - Preservation and Archiving Issues Roundtable Discussion led by Donna Koepp, University of Kansas, Government Documents and Map Library
9:30-10:00 Library of Congress, John Hebert
10:00-10:20 Break
10:20-10:50 National Archives & Records Administration, Richard Smith
10:50-11:20 US GPO, Betty Jones
11:20-11:50 Federal Geographic Data Committee, John Moeller
11:50-1:00 Lunch
1:00-1:30 Forest Service, Betsy Banas
1:30-2:00 Census, Tim Trainor
2:00-2:30 USGS, Dan Cavanaugh
2:30-2:45 Break
2:45-3:15 NIMA, Jim Lusby
3:15-3:45 NOAA National Ocean Service, Howard Danley
3:45-4:15 Fish and Wildlife Service, Doug Vandegraff
4:15-4:30 Wrap-up & Closing Remarks

Preservation and Archiving Issues Roundtable Discussion

Facilitated by Donna Koepp, University of Kansas, Government Documents and Map Library

Introduction (Donna Koepp, CUAC)
Our biggest concern is the preservation of cartographic and spatial data, especially what is born digital and we never see in paper. We are concerned about having snapshots in time for data that is constantly being updated, so that we have historical records.

Libraries are not set up to preserve that data mainly because of file size. Are agencies preserving snapshots of their data? If not is there some role that libraries can play, similar to what we do with paper documents? GPO does some preservation of text documents, but is not preserving maps – GPO is referring users to USGS and other agencies because the files are so large. Libraries have some capacity to work with government agencies in partnership to preserve these datasets.

John Moeller (FGDC) encouraged our participation and representation in FGDC. A specific opportunity is with the Historical Data Working Group of FGDC chaired by Bruce Ambacher from the National Archives and Records Administration (NARA). They developed a policy and guide-
lines statement "Managing Historical Geospatial Data Records: Guide for Federal Agencies" in 1997. Tools in place that can be used include the metadata standard for documentation, a final draft of an international metadata standard should be approved by the end of this calendar year, and the spatial data transfer standard.

Donna Koepp (CUAC) asked if John knew of any agency that was preserving all of its cartographic data.

John Moeller (FGDC) replied that he did not know of any. He knows that the Earth Resources Observation System (EROS) data center has an extensive archive of imagery and Bureau of Land Management (BLM) has a policy for preserving all information including digital information.

Donna Koepp (CUAC) mentioned the special problems with BLM's decentralization. State and local offices are not necessarily following the same rules.

Chris Thiry (CUAC) pointed out users often want historical data. People are doing historical studies, examples include history of land management and growth; this is why we are so interested in snapshots of the data. We may lose this history and end up with a period of time where we don't have the documentation.

Richard Smith (NARA) hopes it is a comfort to know that federal statutes require records maintenance, control and disposition schedules, for materials of enduring or permanent value, regardless of format. Sometimes there is a snapshot provision. The Electronic Records Archive of NARA is charged with preserving many different electronic records formats including maps and cartographic data sets independent of software and hardware. Currently in a pilot project, the Electronic Records Archives is supposed to be up and running by 2004. The Archives has a plan for collecting and preserving digital datasets.

Donna Koepp (CUAC) mentioned the NARA definition of records management and found it comforting that their definition of records includes maps.

Bruce Obenhaus (CUAC) brought up issues of when do we take snapshots and how much change is worth identifying? What is of enduring value? These are hard questions that might not have answers currently.

Richard Smith (NARA) added the National Archives has appraisal archivists that are familiar with electronic records. They are hammering out agreements with agencies on maintenance, use and final disposition of files. That's the law and nearly the practice. Archives has schedules for USGS electronic records, as an example. Archives will likely preserve only a small (2-3% of paper is now preserved and we presume electronic data will be similar) percentage of the data actually collected. This is a shared responsibility between NARA and the originating agencies.

Donna Koepp (CUAC) asked what is included in NARA? Is it similar to the Federal Depository Library Program (FDLP)? NARA keeps records of the agency, FDLP keeps the publications of the agencies. These are different types of material.

Richard Smith (NARA) National Archives collects record sets from agencies. Archives has what he presumes FDLP libraries have and a lot of manuscripts to back up the publications.

Mark Thomas (CUAC) Now there is a blurring of published materials and electronic materials. With digital spatial data, maps are made on the fly, there is no permanent published version because the user makes maps for a specific purpose. The problem lies with saving the original data.

Richard Smith (NARA) Maps or records created by an agency may not have permanent value to the agency and would not be preserved. When records are still important to an agency it keeps them until use of the record dies down; at this point it is transferred to NARA. Some records are deemed so important that the agencies keep them for many decades.

Donna Koepp (CUAC) There still are concerns with items that are not getting into the GPO distribution system, including the very special projects that may be sitting on agency shelves and we don't know exist because they have never been cataloged. This is also a problem with electronic items that never get into the system. It's a matter of getting information out there and sharing it. It's a matter of discovery.

Mike Furlough (CUAC) questioned to what extent NARA has already worked with cartographic data in electronic format? Currently statistical data is the bulk of the electronic data that NARA has archived.

Richard Smith (NARA) - Only 4 groups of spatial files, including the TIGER files, are currently in NARA electronic archives, possibly 5% or less of what is out there. NARA is setting up schedules for the transfer of files but most have not been transferred to NARA because of the high rate of activity on the file. NARA may wait until files are 15-20 years old before they are deposited.

Chris Thiry (CUAC) Asked Mark Flood (NFS) – do you have data that
you can no longer access for any reason?

Mark Flood (NFS) There have been problems accessing data collected 5-10 years ago because of hardware and software changes. This is not as much a problem in maps yet because they have not been done electronically for a long period of time. This problem could be coming in the near future.

John Hebert (LC): Of concern to Library of Congress is the ability to acquire increments of improvements in cartographic output. LC is much more global in acquisitions than NARA.

Linda Zellmer (CUAC): In asking federal agencies about archiving their data the answer was, “it is in the metadata”. They are updating files but only including dates for updated information in the metadata. Would like to see a temporal GIS, with dates when a field or feature was added.

Susan DeLost (NFS): National Forest Service is now developing feature level metadata. For each record there will be a metadata link attached to a particular record including a year when the field was added.

Tim Trainer (Census): From a producer and user perspective you will end up with more metadata than spatial data. That is something that we need to take another look at.

Donna Koepp (CUAC) thanked everyone for their participation and insights on the question of preserving and archiving cartographic data.

Library of Congress
John Hebert
Chief, Geography & Map Division

John Hebert, Chief of the Geography & Map Division of the Library of Congress, presented the LC update again this year. His presentation focused on the areas of acquisitions, staffing, scanning projects, general projects, the Phillips Society and the special project this past summer.

Acquisitions

Of significance is the acquisition of the only known copy of a 1507 map compiled by cartographer Martin Waldseemüller, the first to bear the name “America” and depict a separate Western Hemisphere. Congress appropriated $5 million to purchase the map; fund raising is still underway to secure an additional $5 million. They have some pretty good leads for this money. There are several other items in the packet that came from Prince Johannes Waldsburg-Wolfegg in which the library is very interested. They received 130,000 sheets of tract maps for the 2000 Census from the Census Bureau. After September 11 there was a great deal of interest in holdings covering Southwest Asia. The Division put together a listing of what they hold and have tried to fill in gaps. LC continues to receive materials produced by the former USSR. They have completed most of the acquisitions of Soviet produced maps at 1:200,000 scale and are now acquiring the 1:100,000 scale series world wide. In addition they have sought nautical charts for the Arctic and Pacific coasts. LC has received what John believes will be the final acquisition of paper state road maps, about 20,000 sheets, and expects future receipts from state highway departments will be digital.

Staffing

The Geography and Map Division has a total of 55 employees. In the past year they have added 5 new technicians, and currently have a posting for two new catalogers. An assistant chief of the Division and two new reference librarians will be advertised in the near future. They are adding one new person in the scanning and digital lab to replace one lost last year, bringing the staff back up to four. An additional digital specialist, a GIS person, is also being added. A new GIS initiative to create an “on demand” service for Congress is underway. Two geographer positions will be added for this initiative.

Scanning Program

The Library has over 6,000 maps scanned. Cataloging is slowing the progress with as many as one third requiring original cataloging. They hope to recover some of the cost of the scanning and cataloging from sales of printed copies of the maps. The Waldseemüller map was scanned last fall, front and back. After they complete payment on it, the question will be what to do with the scanned copies. LC hopes to recover some costs by selling prints from the scanned copies. John wants it to be available online. They are currently completing the Civil War project, about 2,500 maps, Revolutionary War period maps, another 2000 maps, and working on about 3000 sheets of British produced maps from the Revolutionary War era. New projects include scanning an early 19th century map of Japan, which is divided into 214 5 x 5 foot sheets. LC holds 207 sheets, 160 of which are not found anywhere else in the World.

Projects

Professor Li from Beijing is coming to work at the Library this summer on the manuscript materials on China. Along with identifying and cataloging these materials they hope to scan many of them. Scanning could be problematic since many of them are
scroll maps, some up to 60 feet long, that may take some creative work to complete. A continuing project is acquiring maps used in the field by soldiers and personal remembrances of those soldiers from World War II, Vietnam, and Korea. The hope is to produce an historical record of how maps are used in combat. Any help on locating veterans and maps would be appreciated. LC and the National Imagery & Mapping Agency (NIMA) are now in a cooperative cataloging project where NIMA is cataloging their set maps in Marc format to the sheet level. A Lewis and Clark exhibit, largely maps, is being planned; the kickoff will be in Sept. 2003.

Philip Lee Phillips Society

The Phillips Society is the Friends of the Geography & Map Division organization. There are currently over 200 members. This year’s meeting is a joint meeting with the Texas Map Society in Arlington, Texas in October. The Society publishes newsletters and occasional papers.

Special Project

Last year’s summer project with five participants was a great success. They are not planning one this year. Instead, this summer the Library is hosting two librarians from tribal libraries in North Dakota and Minnesota. They expect to go back to the traditional summer project next year.

Sanborn Atlases

LC currently does not have a project to scan the Sanborn Atlases. Bell and Howell/Proquest developed a digital record of the black and white film but researchers are dissatisfied because it is black and white and because the film is not always a good copy. LC would like to scan the original color maps but lacks the resources to digitize all the maps and lacks permission from EDR Sanborn for those still under copyright.

LC is looking into the possibility of using some facilities at Fort Meade for remote storage.

National Archives & Records Administration
Richard H. Smith
Senior Archivist, Cartographic Unit
Special Media Archives Services Division

Dr. Richard Smith began by recounting the history of the Cartographic & Architectural Records Branch of the National Archives (web site http://www.nara.gov). Maps and chart acquisition began in the 1930’s. In the 1960’s aerial photographs were added to the collection; in the 1970’s through 1990’s architectural and engineering plans were also added. Currently, they have just under 2.5 million maps, just over 2.5 million architectural & engineering drawings and 16 million aerial photographs. Not all acquisitions are in paper copy; the Archives also have materials on film and aperture cards. The cartographic unit has a staff of 14 who accession, process, describe and make records available to the public in the Public Research Room. The Research Room is open 6 days a week; Archives II in College Park, MD is open 3 evenings a week. For more background on the Cartographic and Architectural Records Branch refer to General Information Leaflet No. 26 (http://www.nara.gov/publications/leaflets/gii26.html).

Records, as defined by federal statute include “all books, papers, maps, photographs, machine readable materials, or other documentary materials, regardless of physical form or characteristics, made or received by an agency of the US Government under Federal law or in connection with the transaction of public business and preserved or appropriate for preservation by that agency or its legitimate successor as evidence of the organization, functions, policies, decisions, procedures, operations, or other activities of the Government or because of the informational value of data in them” (44 USC Chapter 33 Section 3301). Acquisitions are by records control schedules drawn up between the Archives and the originating agency. Archives provides records life-cycle management guidance to all Federal agencies and conducts evaluations of Federal agency records management practices. Items come to the Archives after active use of the materials has diminished, the standard is about 30 years (after current administrative need for the material is extinguished). Occasional offers of unique materials are made, but this is somewhat rare. Exceptions to the 30 year rule include receipt of a copy of most Federal agency maps at the time of printing. These records series are sometimes supplemented by annotated copies of maps and background files for published maps. Records are stored in record groups and kept in record series. The provenance of the materials is maintained. Appraisal and retention at Archives is done on a series basis, not the individual piece. Cataloging is done at collection, series and record group level. Item-level cataloging is rarely done.

Collection maintenance and preservation are major priorities. To minimize handling Archives creates reference copies in photocopy, microfilm or photographic reproductions for especially valuable items, but generally original maps or drawings are brought to the Research Room. A recent example is the color 35mm film of the 1930 Census enumeration district maps now available to accompany
the 1930 census schedules released in April. This is the first time Archives has filmed enumeration district maps. Paper maps are stored flat in map cases in acid free folders with occasional items in Mylar sleeves. A scanning project, done under contract with a private company, has processed about 300 maps and 100 aerial photographs so far. We should also be aware of the Center for Electronic Records, their programs and the related Electronic Records Archive (http://www.nara.gov/nara/electronic).

Government Printing Office
Betty Jones
Chief, Depository Administration Branch

Betty Jones, Chief of the Depository Administration Branch, presented for the Government Printing Office (GPO). She has been in the position for less than a year.

Staffing Changes

On Friday, March 29, 2002, President Bush nominated Bruce R. James to be Public Printer. The Current Public Printer, Michael F. DiMario has been in the position since 1993. The Public Printer is the head of the Government Printing Office.

In the past year GPO has hired a chief of serials cataloging and a chief of monograph and map cataloging. They have also hired two new catalogers and made offers to two other candidates for cataloging positions. There are currently 14 catalogers with 6 positions still to filled. In addition they have hired three program analysts and will hire an additional librarian in the Depository Administration Branch.

Budget: FY2002 Appropriations

LPS received funding from Congress to modernize the automated library system. They are on the fast track to purchase a state of the art integrated library system (ILS). The current legacy systems made it through the Y2K transition. One persistent problem is the current systems do not allow for the easy transfer of information from one to the other. This is a major advantage of the ILS. GPO will be hiring a consultant to help with the transition. Any help or advice librarians outside GPO can provide would be greatly appreciated.

Recalls

Since FY 1995, GPO has distributed 230,019 tangible products (print, microfiche, and CD-ROM) titles to depository libraries, and recalled just 20 (16 to be destroyed, 3 returned to the agency, 1 removed from shelves). GPO has not been asked to withdraw any electronic publication. Several agencies have taken electronic publications off their web sites.

Recommended Workstation Specifications

Betty presented copies of the 2002 Recommended Specifications for Public Access Workstations in Federal Depository Libraries and pointed out the recommendations “for cartographic data use”. This draft will be published in Administrative Notes and supersede the recommended specifications dated June 2001 and become requirements on October 1, 2003.

Collections

GPO cataloged 4,200 maps and map products this past year from USGS, Census Bureau, Department of Agriculture, NIMA, NOAA, CIA, and other agencies in paper, CD, DVD, and online. GPO will continue to disseminate maps in a tangible format whenever possible. Census tract maps for the 2000 census will not be distributed in paper because of the prohibitive production and distribution cost. They will be available on DVD. The Interagency Agreement with USGS expires this fiscal year. GPO does not foresee any major changes or problems in renewing the Agreement.

Federal Geographic Data Committee (FGDC)
John Moeller, Staff Director

John Moeller, Staff Director of the FGDC, presented at the meeting for the first time. He primarily discussed policy; what the FGDC is, what tasks have been assigned to it and then generally about the National Spatial Data Infrastructure (NSDI). FGDC is an interagency and intersectional committee at the federal level. There are currently 17 cabinet and executive level agencies represented, and additional agencies/organizations are expected to become members, e.g., GPO and GSA. The FGDC has a Steering Committee, a Coordination Group, and a FGDC Secretariat staff. FGDC is under the leadership of the Department of the Interior. The Deputy Secretary of the Department of the Interior is the chair and the vice-chair is Mark Foreman, OMB Associate Director for Technology and Electronic Government. Within the Commit-
tee, there are 27 working groups or subcommittees that are organized on thematic categories, for example, the Forest Service for vegetation, the Fish and Wildlife Service for wetlands, and Census for cultural and demographic issues. Working groups deal with issues that cut across areas, such as a NARA lead working group for historical data and a recently established working group on homeland security with NIMA and USGS serving as co-chairs. FGDC’s primary responsibility is determining among local participating agencies how activities for providing, collecting, and utilizing spatial information at the federal level can be better coordinated and provide federal leadership for the National Spatial Data Infrastructure. A component of this goal is also to involve state, local and tribal governments, the academic community and private sector.

John said that he directs the staff that supports the daily operations of the committees. The FGDC was organized in 1990 under OMB Circular A-16, which promotes “the coordinated use, sharing, and dissemination of geospatial data on a national basis”. This establishes the federal information policies for the federal government. Regarding questions about the recent removal of some government information off the Web, he stated that the government’s policy still is to have federal information made available at the least cost to the widest dissemination with the few restrictions as possible. In spite of September 11th, that policy has not officially changed, although the limitations of it have changed and there were plans to reassess OMB Circular A-130. At this time, there will probably be three categories of information, one being classified, another being open public domain, and the third being restricted information based on some criteria and protected for perpetuity in some cases and in some cases open access after a certain amount of time. Studies have indicated about 80% of government data has a spatial component. When managing business and decision processes in the federal government, geography can be used to better understand the entire environment. More and more, the geospatial information is perceived by people as fundamental; we need to take opportunities to build the global spatial data infrastructure. There are about 50 or more countries that are either beginning to build this infrastructure or are planning to do so; the commonalities are many. FGDC is supporting these initiatives. A new kind of infrastructure to improve the use of geospatial resources across the country is needed. Currently, this is operated at the federal level under an OMB Circular A-16 and Executive Order 12906. The components of the spatial data infrastructure are:

- Framework: 7 layers have been identified to provide a consistent base for spatial location. They are imagery, elevation, cadastral, transportation, government units, geodesy and hydrography.
- Metadata: An explanation or textual description of the data source. FGDC has a metadata standard and federal agencies are required to use this. The expectation is that we will see greater implementation of the standard as more and more vendors begin to put it into their tools. In addition, the ISO standard is being developed by the ISO Geospatial Technical Committee 211. It should be in place by the end of the year.
- Partnership: Relationships for collaboration, sharing and policy deliberations. These are critical; 80% of the government data has a spatial component: cadastral data is only 1-2% federal while 98% is at the local level; only 5% of biological spatial data is federal. Thus the only way to build information relationships is through partnerships and collaborations.
John emphasized that the National Spatial Data Infrastructure (NSDI) is being developed so organizations cooperatively produce and share geospatial data. He cited several examples of geospatial data products where use of standards has added to the understanding of the importance of interagency cooperation. A goal of the Infrastructure is to reduce duplication of effort among agencies and localities, improve quality, increase availability and reduce costs related to producing and accessing geographic information.

John discussed the geospatial One-Stop E-Government initiative, which resulted from the government's desire to provide services to help other government entities, businesses and citizens to more effectively use electronic technology. A federal OMB task force was established to recommend profitable e-government initiatives; 24 initiatives were selected, one of which was the Geospatial Information One-Stop. This initiative was assigned to the Department of the Interior and FGDC. FGDC is currently working with 11 federal partner agencies plus state, local and tribal governments. The vision of Geospatial One-Stop is to spatially enable delivery of government services and provide a place where access to individual and combined information will be possible.

The future model should provide fast, low-cost, reliable access to geospatial data needed for government operations via a government-to-government portal for this information. This will also facilitate effective alignment of roles, responsibilities and resources for the government-to-government geospatial interactions needed for vertical missions such as homeland security. Another goal is to have multisector input for standards which will create consistency in order to promote interoperability and stimulate market development of tools. The focus of Geospatial One-Stop is to accelerate development and implementation of NSDI technology, policies and standards that support "one-stop" access. The initiative's outcome should accelerate the infrastructure achieving better, faster, less expensive access to reliable data for use by citizens, to improve use of resources for data acquisition, partnerships, reduce duplication, and to have all E-Government initiatives spatially enabled through data and functional capability.

In summary, John stated an important goal is to create a multipurpose program of procedures and technology with federal, state, local, and tribal governments, academia, and the private sector to provide access to an enhanced geospatial one-stop portal that is enabled by standards and technology interoperability tools and is not vendor specific. Data will be based on standards. It will be commercially available and technology driven so that it can be used in a wide variety of applications enabling geographic information use across the nation and World. We are encouraged to provide output and representation from our communities, to give input by reviewing standards and recommending candidates to work on team projects to help further the Geospatial One-Stop initiative.

National Forest Service
Betsy Banas, Staff Cartographer
Geospatial Services Group

Betsy Banas, National Forest Service (NSF) gave us an overview of the Service's mapping history and programs, and digital mapping committees.

History

Betsy began by noting similarities between the mission statement of CUAC and that of the Forest Service. The Forest Service mission statement is "caring for the land and serving the people". Gifford Pinchot was the first Forest Service chief; the mission statement then was to "provide the greatest amount of good for the greatest amount of people in the long run". She noted the philosophical differences between Gifford Pinchot and John Muir in establishing "reserves" vs. "preserves".

The Forest Service was created in 1905 to provide quality water and timber for the Nation's benefit. It originally had 60 forest reserves covering 56 million acres; now it has 155 forests and grasslands covering 191 million acres. The Service is very decentralized, having 9 Regions, 1 - 10. Region 7 was absorbed into Regions 8 and 9 long ago. At the time that the Forest Service was organized, it was deliberately decentralized, as it was decided that decision makers needed to be right there, "on the ground" as they were most familiar with the public's needs at the local level.

The Forest Service is the largest forestry research organization in the World, having 20 research and experimental forests and other special areas. It also provides technical and financial assistance to state and private forestry.

Over the years, the public has expanded the list of what they want from national forests and grasslands. Congress responded by directing the Forest Service to manage national forests for additional multiple uses and benefits as well as for the sustained yield of renewable resources such as water, forage, wildlife, wood, and recreation. Multiple uses means managing resources under the best combination of uses to benefit the American people while ensuring the productivity of the land and protecting the quality of the environment.
The mapping and geospatial data programs have helped meet the Forest Service’s mission by aiding in fire management, forest planning and protection, watershed restoration, ecosystem management, resource sustainability, and recreation. Initially maps were done at the local level and were a vital part of administering the land. Maps were made to the specifications and requirements of the particular forest. There was little standardization or consistency among Regions.

This changed during World War II, when there was an effort to consolidate mapping for defense purposes. The Forest Service, at the time, had the equipment and expertise. During the War, NFS map programs worked out of Gettysburg, Pennsylvania, mapped areas of the U.S. along the Pacific Coast, and aided in making detailed maps of Japan.

Through the late 1960’s regular Forest Service mapping business continued to be decentralized and non-standardized. But mapping technology began to change; new costly equipment, computers, etc. required centralized mapping operations. The Geospatial Service and Technology Center (GSTC) was founded in 1975 (then called Geometronics Service Center); it is located in Salt Lake City, Utah. Its intent was to bring together the skills and resources needed to build and maintain a standardized base mapping program. The Center’s program has since expanded to include production of digital data.

The Remote Sensing Application Center (RSAC) is co-located with GSTC in Salt Lake City. It provides technical support in evaluating and developing remote sensing, image processing, and how it relates to geospatial technologies throughout the Forest Service. It also provides project support and assistance with using remote sensing technologies, and technology transfer and training.

The Geospatial Service and Technology Center is more than maps. It provides geospatial services, data, training and awareness. These services and products support core Forest Service business needs including forest planning, watershed restoration, resources inventory, and transportation management. While NFS has a national program and centralized geospatial service and tech center in Salt Lake City, many mapping activities continue in the Regions. The Forest Service is developing a clearinghouse which will be a FGDC and NSDI node. This will eventually provide all Forest Service geospatial data, and FGDC compliant metadata. Hopefully by September of this year, that node will be active.

Forest Service Maps

The Primary Base Series (PBS) maps of NFS have a scale of 1:24,000. They are topographic maps, used as an administrative product. The Forest Service started production in 1992 of the Single Edition Quad maps when they entered into an agreement with USGS. The Primary Base maps are produced by the Forest Service to USGS standards. This agreement has eliminated duplicate efforts. The maps are revised sooner with partnerships than without, and show Forest Service data. USGS prints and distributes the maps for the Forest Service. The Forest Service is responsible for about 12,500 of the United States’ 55,000+ topographic maps. They are mapping at a rate of 600 per year.

The Secondary Base Series has a scale of 1/2 inch to the mile (1:126,720). The cartographic work is performed at GSTC. Base maps are forwarded to Region/Forest where they are enhanced with photos, transportation guides and visitor information to become the standard Forest Visitor Map.

Forest Visitor Maps are being distributed by USGS through a relatively new agreement. Previously the maps were only available at Forest Visitor Centers. The new agreement provides for the sale of Forest Visitor Maps through a USGS vendor network, so customers have one stop shopping. The maps are available to vendors at volume discounts. This partnership has improved customer service. The maps are still available at Forest Visitor Centers, Forest Supervisor and District Ranger Offices and can also be ordered from other regional Forest Service websites. USGS provides the one stop shopping capability that vendors like because they receive a discount and can stock a variety of maps on their shelves.

Other Forest Service maps include: wilderness area maps, wild and scenic rivers maps, “Pocket Guides,” “Guide to Your National Forest,” and other specialty products.

Forest Service Geometronics service center web site: http://fsweb.rs.fs.fed.us/unit/puf/geometronics/

Other collaborative efforts include http://www.recreation.gov. This interagency initiative provides recreation information to public via the web. It cuts across government boundaries. Outdoors America Map is a guide to recreation opportunities on Federal Lands; 11 Federal Agencies are involved. The Forest Service is a voting member on the US Board on Geographic Names. Forest Service is responsible updating and maintaining the Geographic Names Information System for their areas. Forest Service is adding information to the National Atlas of the United States. There are other exchanges with USGS including
Digital Elevation Models (DEMs), Digital Orthophoto Quads (DOQs), and the National Map. The Forest Service is working in Lake Tahoe Basin Management Unit on a pilot of the National Map.

FGDC and Geospatial Advisory Committee (GAC) Activities

Forest Service is participating in the FGDC (Federal Geographic Data Committee). FGDC is trying to create Geospatial One Stop and 1-Teams (which deal with local level data sharing). John Moeller (who also spoke at CUAC) is FGDC Secretariat Staff Director and Project manager for Geospatial One Stop. NFS has taken the lead on the FGDC Vegetation Subcommittee. The Subcommittee’s activity had languished - initially a lot of effort had been put into trying to develop a vegetation data standard. No consensus on the elements of the standard could be reached, within NFS or among agencies on the subcommittee, so it stalled. Alison Hill is new chair; the Committee is reinvigorated. NFS is the Co-Lead for Sustainable Forest Data Subcommittee, active on Homeland Security Working Group, and Imagery and Remote Sensing Task Force.

The Geospatial Advisory Committee (GAC) was formed in 1999 to address advancing of Forest Service Geospatial Data Technologies. The geospatial community recognized the need to direct and coordinate geospatial data activity. GAC promotes awareness of geospatial data throughout Forest Service, and advises the Geospatial Executive Board (GEB). Its roles and responsibilities are to identify, monitor, and address issues regarding the state of NFS geo-spatial programs and activities. It also develops and makes recommendations concerning geospatial program execution to the Geospatial Executive Board. GAC communicates progress to NFS geospatial community and others. GAC emphasis areas are 1) standardized GIS data, 2) natural resource applications coordination, 3) geospatial training and awareness, 4) coordinate and share standardized GIS data, 5) cartographic publishing, and 6) technology architecture coordination. GAC’s goals are to ensure NFS geospatial policy programs are compatible and integrated, and to ensure programs are responsive to NFS business needs.

Forest Service Contact Information:
- Forest Service Home Page
 http://www.fs.fed.us
- GSTC Home Page
 http://www.fs.fed.us/gstc

Bureau of the Census
Tim Trainor
Chief, Cartographic Operations Branch

Tim Trainor began by discussing a couple of the Census Bureau’s Geographic programs. The fifty State Data Centers (SDCs) participated in the Public Use Microdata Area (PUMA) Delineation Program. Tim spoke at some length about the Urbanized Area Delineation program, which culminated with a Federal Register notice on May 1, 2002 (71 FR 21961) listing the 466 areas defined as Urbanized Areas (UA) for Census 2000 (up from 405 in 1990). General criteria are that there must be a density of 500 people per square mile and a minimum population of 50,000. There is no grandfathering of urbanized areas: Cumberland, MD, was dropped from the UA list although it qualified in 1990. The more important detail is that the category has been expanded to include “urban clusters”, with urbanized areas and urban clusters totaling 3,638 qualifying areas, so more areas will have data available. The smaller “Urban Cluster” (UC) is defined for areas of sufficient density from 2,500 to 50,000 inhabitants plus other characteristics. Detailed definitions and discussion of UA’s and UC’s may be found in an announcement in the Federal Register March 15, 2002 (67 FR 11663). The concept of undevelopable areas adjacent to or within UAs (e.g., floodplains along a river) are now diplomatically being called “exempt” rather than “undevelopable.” All of this information is available on the web.

Tim then reviewed several of the geographic products from Census. Some of these involve Zip Code Tabulation Areas (ZCTAs), in which each Census block is assigned a single Zip Code. This constructed geography will result in various special boundary files and tabulations. TIGER 2002 files, which use 2000 geography, will be available soon on the web. At some point there will probably be maps but specifications have not yet been finalized.

2002 TIGER/Line files, based on Census 2000 Geography will be available to download by the end of this week. Based on Census 2000, many redistricting activities are underway in the states.

Predefined maps, mostly in pdf format, are available on the Internet and are also available on DVD (CDs are used only if the files total less than 650 megabytes) and as on-demand plotted maps. Recommended specifications for plotters are on the web site. Tim has a map showing locations of the State Data Centers, it is used internally, but possibly could be made available. It is constantly changing and has all of the different kinds of state data centers, in terms of their classifications. Census 2000 block maps for every community in the
country have been produced. They include the 130,000 maps sheets John Hebert referred to as recently accessioned at LC Geography and Map Division. Census has produced an additional 280,000 sheets, that are block maps for geographic levels above census tracts, such as places and county subdivisions.

For legal governments, maps have been sent to the entity’s highest elected official and currently are available on the web. Six DVDs will be manufactured shortly that include regions of states. Unlike the 1990 county block maps, users can access a town or city of choice without having to acquire all of the maps for a county. Census tract outline maps are available on one DVD and American Indian/Alaskan Native Areas and Hawaiian home land block maps are available on one CD-ROM.

Generalized boundary files are available on the web for most levels of geography in several popular ESRI formats: Arc/Info exports (.e00), ArcView shapefile (.shp), and Arc/Info ASCII format. Census 2000 boundary files are available in both high resolution and low resolution versions. The 1990 files are being redone so that nested geographies share the same points.

As a result of user input, more printed reports than originally planned will be generated. County outline and subdivision outline maps will be produced. Page sized county maps by state, will be done by the end of summer. Metropolitan Areas will be redefined in 2003 based on new criteria.

The Bureau is still producing thematic maps. One recent map shows the center of population for each state. Another is the famous “nighttime” map, where white “light” on a dark background indicates population distribution, which recently had the biggest press run in Census history, of 1.5 million sheets. Five copies were sent to every school in America. They are planning a 108th Congressional District Atlas for next year and have released a Census 2000 atlas based on the first seven questions of the census questionnaire.

This is the 100th anniversary of Census as an agency.

The Bureau realizes the acute need to modernize its Master Address File (MAF) and the entire TIGER system. TIGER is old and technology has advanced significantly since being developed. Most people don’t know that Census still maintains the files in an internal format, not the ASCII format that it distributes. Everyone knows that the positional accuracy of boundaries is inaccurate; Census wants to move beyond relative accuracy to true positional accuracy. One reason this will be imperative is that TIGER will form the transportation layer of The National Map. Updating can’t wait; sixty-five committeees are already looking at Census 2010 planning, and to maintain the geographic standards of the ongoing American Community Survey, MAF and TIGER must be updated and be improved. The goal is to get an enumerator to a housing unit 100% of the time. There are many partnerships with other agencies and partners. Census maintains boundaries for most local governments on an annual basis.

The MAF/TIGER modernization is focusing on three important projects. One is to get existing files where they exist. Out of the 3,000 counties, about 1,000 of them have GIS files, of them a small number have really good GIS files. Census is currently evaluating that. A second strategy is to have contractors look at the commercial sources available that can be used without restriction in the public domain. A third alternative is to use imagery when the previous two options are not possible as a means to improve and maintain the spatial data.

U.S. Geological Survey

Dan Cavanaugh
Chief, Branch of Program Development

Dan Cavanaugh, US Geological Survey (USGS) gave an update that focused on three themes: New Products, especially published maps, the National Atlas and the National Map.

New Products

USGS has released several maps that are different than they generally produce. They include a map of Lake Tahoe showing underground structure, and a *Tapestry of Time and Terrain* which depicts geology and physiography. A new map of New England showing earthquakes between 1638 and 1998 (I-2737); proved particularly timely given the recent earthquake there. Another recently published map, *Geographic Face of the Nation – Land Cover*, was developed from National Land Cover Data (NLCD), which was jointly produced by USGS and the Environmental Protection Agency. A new relief map will be released similar to the Thelin & Pike map (late 70’s, early 80’s) titled *Geographic Face of the Nation – Elevation*. The new map will have fewer data artifacts than the previous edition.

USGS is continuing to forge partnerships, especially with the Forest Service. USGS Map Dealers (about 2000 of them) are now distributing Forest Service maps. The goal is to distribute maps for all 9 Forest Service regions. Map distributors are pleased
about being able to obtain maps from one source (USGS), rather than dealing with multiple agencies and regions. USGS has also entered into partnerships with other agencies, such as Library of Congress, which has resulted in reproduction of an 1894 map of Colorado, available from USGS (http://rockyweb.cr.usgs.gov/historicmaps/historicmapsfromlca.html for more information). USGS is working with the National Park Service to produce geologic maps of the National Parks. They also continue to distribute National Imagery and Mapping Agency (NIMA) products. About 90-95% of the NIMA products that were available before September 11 are still available.

Some of the most popular products at USGS continue to be the booklets, such as General Interest Publications, which are available for free. Dan indicated that just prior to our meeting, the Director of the Survey announced that the USGS will be getting out of retail sales (at the Reston ESIC) by FY2004. It is uncertain if that is the beginning or end of FY04. Over the counter retail sales may cease at other USGS locations as well, and is probably a year or two away. A question was asked if other ESIC offices will be closed. Dave indicated that the Washington, D.C. ESIC in Main Interior had closed this year and the Spokane ESIC was closed last year to budget cuts. Remaining ESIC offices include Reston, Menlo Park, Denver, Anchorage, Rolla, and Sioux Falls, SD.

Dan was asked about the recently published maps of Utah and Colorado that came through FDLP. They are not a “national program”. The maps were produced from the National Elevation Dataset by Rocky Mountain Mapping Center; they are similar to the one of Pennsylvania issued several years ago. They will not be issued for the entire US unless funding is made available. Dan was also asked if there were any plans to revise or update Maps for America. The response was no, due to lack of funding.

The National Atlas

The National Atlas continues to be one of the Geological Survey’s most popular web sites. It is a cooperative venture between 21 partners and ESRI. There are presently 420 map layers available on the National Atlas web site. People can use it to make and print their own maps. It also includes internal links to other web sites. For example, when a user clicks on a National Park, they are linked to sites with information on that park. The National Atlas web site receives 4.6 million hits per month, and links to 1900 other web sites. A new map is drawn every 1.5 seconds. Over 350,000 map layers have been downloaded from the site.

Through the National Atlas, USGS has been able to produce hard copy products, such as the Federal and Indian Lands map, the elevation map of North America, the Forest Cover map, (produced with data from many Federal agencies), the Presidential Elections map, which includes insets showing the results of all Presidential elections since 1789, and the General Reference map, showing roads and county boundaries. This map will be revised to show Alaska at the same scale as the lower 48 and rereleased; users will be able to compare the land masses against each other. The National Atlas is viewed by some people as a small scale version of the more detailed National Map.

The National Map

The National Mapping Division is now the Geography Discipline. The National Map is everything that the National Mapping Division used to do. There used to be three organizations under the National Mapping Division. They were Map and Data Collection, Earth Science Information Management and Delivery, and Research. They are now known as Cooperative Topographic Mapping, Land Remote Sensing, dealing with Landsat, and Geographic Analysis and Monitoring, which equates to the research area.

The primary activity of the National Mapping Discipline is to compile the base data for the National Map. The vision of the National Map is to develop a current, continually revised, seamless, complete, consistent product that will reflect geographic reality, have positional and logical consistency, and no cartographic off-sets. It will be a temporal record, with metadata for both the data set and the features within it. The National Map will address 5 needs, to Map, Monitor, Understand, Model and Predict. The 7.5’ topographic map is probably the USGS’ most famous product. It is the only US cartographic product that is comprehensive, transjurisdictional and border-to-border and coast-to-coast. Compiling it was an immense engineering feat that would cost over $2,000,000,000 to replicate today. The average topographic map is 23 years old. USGS is finding that they cannot keep them current. Base data, such as aerial photographs, often show features topographic maps do not.

Because topographic information has a variety of uses (scientific studies, planning, decision making, land and resource management, delivery of government services, economic activities, natural disaster relief, homeland defense), it will be the base of the National Map. There is presently some duplication of effort among and between geographic information sectors (federal, state and
local governments and the private sector). Cooperation between sectors (Cooperative Topographic Mapping) will provide the base information needed for the National Map. Partnerships will be built to develop base data, which will be accessible via the web 24 hours a day. Users will be able to specify the data and area of interest and print maps on demand. Cooperative Topographic Mapping includes activities such as acquiring, archiving, and disseminating base geographic data, maintaining and providing derivative products, including topographic maps, and conducting research to improve data collection, maintenance, access, and applications capabilities. Core data, which will include themes such as orthophotography, elevation, transportation, hydrography, structures, boundaries, geographic names and land cover, will be public domain, either collected by government agencies or made available through licensing agreements. Links to other data with higher resolution, enriched content and additional attributes will be available. These links may be to licensed data. This means that USGS' role will be changing from data producer to organizer responsible for awareness, availability, and utility. USGS will be the catalyst and collaborator for creating and stimulating data partnerships, a partner in standards development, and an integrator of data from other participants. When no other source of data exists, USGS will produce and own the data. There will be a temporal component or versioning, but the details have not been worked out yet. Data will be accessible 24 hours a day and will be in the public domain.

The National Atlas is an example of a small-scale implementation of the National Map. It has been developed through partnerships. USGS has integrated the content so that it is consistent nationwide. They have also developed the metadata and provided web access. USGS offers derivative products, such as the data layers and printed National Atlas maps.

There are currently 7 National Map pilot projects underway in the US (see http://nationalmap.usgs.gov/nmpilots.html) for more information. Delaware is currently most complete and went live April 18 (URL: http://www.datamil.udel.edu/nationalmappilot). September 11 illustrates the urgency for geospatial data and the National Map. It showed us that data must exist before, during and after an event, be readily accessible, and that partnerships among state, local, and federal agencies and the private sector are required. The events have illustrated that cartographic information is a national infrastructure, just like the Interstate Highway System. As a result of September 11, there is an emphasis to compile information, including high-resolution color imagery, high accuracy elevation data and critical infrastructure, for 120 major metropolitan areas in the United States. NIMA and other Federal agencies are partnering in this effort. Links with state and local agencies and “first responders” are also being developed.

National Imagery & Mapping Agency
Jim Lusby, NIMA Staff Officer Disclosure and Release Division, Office of International & Policy

NIMA has authority under U.S. law, Title 10, to restrict distribution of cartographic data if it is required to do so under international agreements, if disclosure would reveal sensitive methods for obtaining the data, or if disclosure would interfere with military or intelligence operations. Officially Limited Distribution (LIMDIS) is a caveat, not a security classification, e.g., “Classified” or “Secret.” It is still enforceable under law. Roughly 35% of NIMA’s products fall under the LIMDIS category.

NIMA has 80,000 different line items; of those, 30,000 are limited distribution. 20,000 are foreign produced and NIMA works in cooperation with the foreign governments.

Jim has worked to arrange exceptions to LIMDIS for academics and government agencies for expressly noted purposes, e.g., to support disaster relief operations. Unauthorized redistribution of LIMDIS data in such situations can result in agencies or contractors losing their ability to obtain future exemptions. Most requests for exemption require agreement of a third party, such as the foreign agency responsible for supplying the data. NIMA evaluates requests on a case by case basis, and tries to balance benefits and risks of exemptions. NIMA also assists foreign countries with information in times of need. Jim mentioned NIMA and USGS efforts in assisting Honduras, Nicaragua, and El Salvador during Hurricane Mitch. They are partnering with USGS, Census, Forest Service, and others.

Making NIMA products available to other government agencies can be a lengthy process. Criteria for approval of release is based on desired geographic location, the use, and justification for needing the material.

NIMA is working to simplify the process by spelling out conditions of release during initial data collection
process with third parties, taking some internal steps to formalize LIMDIS policies and procedures, and by highlighting the issue to NIMA customers in forums such as CUAC. Is there a greater amount of risk to giving this product to someone to satisfy them? Are there other sources that will work? Is this the only source and what kind of risk will have to be weighed? What is the derived product coming out of it?

There are many multinational projects underway. NIMA works with “disclosure” or “release” restrictions. Disclosure is where someone can look at it and walk away or release where they can actually give someone the map. NIMA is trying to obtain more “disclosure” than “release” situations in working together.

Limited distribution is a caveat that restricts anyone from using it unless NIMA gives approval. Official use only means that you need that product for planning and you will use it only for that purpose.

Some products will be more easily available, others will be less. NIMA will be working on updating their “Memorandum of Understanding” (MOU’s). They are trying to reduce the amount of LIMDIS information or make it classified and try to get out of the gray area.

Will Danielson (GPO) asked about maps received at GPO for FDLP cataloging that were marked with the LIMDIS caveat. Jim said that GPO/FDLP were indeed supposed to receive such items as they had been declassified. Jim explained that after printed materials are marked LIMDIS at the printer, a new press run can not be done to remove the LIMDIS caveat. Instead distributor is supposed to be remove or obliterate the marking.

Finally, Jim presented a revised schedule for release of the Shuttle Radar Topography Mission (SRTM) data products. This is the digital terrain data that librarians are hoping for. Alaska is not well represented. Having fallen behind after September 11, Jim cautioned that the schedule was subject to further change. Production of data for North and South America is expected to be complete by summer 2002, but distribution schedules and methods have not been determined. USGS, through the EROS Data Center with a joint agreement, will be the data holder for the public. Public release data will vary in resolution, depending upon geographic area. USA data will be level 2 (30 meter resolution), non-USA areas will be level 1 (roughly 90 meters). By 2004, everything should be completed, elevation data for the World, and all the products done. It will be much better than anything they have had in the past and they are using additional information from others. 1,000 meter is available now.

National Ocean Service - NOAA
Howard Danley
Deputy Chief of the Navigation Services Division

NOAA has 1037 paper charts for sale through the Distribution Division of the Federal Aviation Administration’s National Aeronautical Charting Office. The Aeronautical Charting Office also prints nautical charts, which are available through the FDLP. A private company, Maptech, sells raster images of the charts. On the web at http://www.maptech.com, thumbnails at 90 dpi are available using MsSid compression.

Many graduate students are interested in shoreline movement over the years, terrain, ports, and features. For the last four to five years, a selection of historical charts from the late 1800s to about 10 years in the past has been available on the NOAA web page. In cleaning out the warehouse, they discovered historical charts and scanned them. They can be downloaded. MsSid made this possible. These in-clude hydrographic surveys. One can use “mapfinder” on the website: http://mapfinder.nos.noaa.gov/ to find hydrographic surveys over time.

U.S. Coast Pilot is a supplement to the nautical charts. From the early to mid-1800s, this was a private publication. In the mid-1800s, the Coast Survey purchased the publication. NOAA has contracted with a company in Beltsville, MD to scan the Coast Pilots starting with the oldest, a 1776 publication by the British Admiralty. These images will be placed on the Web, linked through the NOAA library. The online Coast Pilots will be searchable by chapter with an index in the back. Some of the older Coast Pilots had foldouts that are causing scanning problems because they do not want the binding affected. Funding has been provided for about half of the project. Additional funding will be sought next year to finish the it.

NOAA will continue to place electronic nautical charts on the Web in a vector format. About 150 charts with a browser available that can be downloaded are available. They differ from printed charts; symbology and detail are different. Current coast pilots are available on the web and can be downloaded. Electronic charts and Coast Pilots are considered “provisional” because they are not updated for navigation. These images have increased sales. Distances between Ports will go up on the web too.

Post September 11, NOAA has taken airflows, ship schedules and names from its web site, but decided to leave nautical data as it can be obtained elsewhere.
Questions about potential web products included: the early edition nautical charts of Alaska that had been classified because of the Distant Early Warning (DEW) sites; and the historical t-sheets. The T-sheets (topographic) date back to the mid-1800’s and contain a tremendous amount of information including land use, land ownership, and place names. National Archives holds the t-sheet photographic negatives and the originals.

Paper charts will be around for an indefinite time, especially for the recreation community. For large vessels, there will be a requirement for backup, in whatever form.

The print on demand program is still alive but going slowly. There are 876 charts of the 1,037 available through print on demand. The number of print on demand agents is now 40. 17,000 copies of charts have been sold through print on demand last year.

U.S. Fish and Wildlife Service
Doug Vandegrift
Chief Cartographer

Doug Vandegrift is chief cartographer at the Fish and Wildlife Service. The Service (F&WS) has seven regional offices and about 25 cartographers throughout the United States.

Over the last year, his office has worked on digitizing the boundaries of the 538 wildlife refuges. They are three-quarters complete. Doug noted that 85% of refuge acreage is located in the state of Alaska.

In addition, they are working on a digital land status layer indicating F&WS land ownership. In other words, what lands they own within the wildlife refuges. They are always trying to acquire land to protect critters. Refuge boundaries are approved acquisition boundaries and within that boundary, they have decided that the habitat is worth saving.

Refuges date back to 1903, but the F&WS was not created until 1940. The Bureau of Biological Surveys was the first agency to manage wildlife refuges and in 1936, developed a template of what refuge maps should look like. They are still using the same format, but in 1980 ANILCA added 100 million acres in Alaska, and the format no longer worked well. The F&WS is experimenting new ways of depicting wildlife refuge land status using digital raster graphics (DRG’s) and digital orthophotoquads (DOQ’s). F&WS has new refuges in the South Pacific and the agency is producing new maps of those areas. Doug indicated that they are currently working with USGS on a new refuge map to commemorate their Centennial. Alaska will be at the same scale as the lower 48.

The Yukon Delta refuge includes 26 million acres. F&WS has scanned about 500 of the original land status maps dating back to the 1920’s. Originals will go to National Archives. Refuge boundaries are available on the web and they may be downloaded. It is important to recognize that there may be private inholdings within the refuge boundaries depicted.

Work continues on the Real Property Database. The database provides information on tracts of lands owned by F&WS including price paid, parcel size, name of former owner, and additional information. Some information is not available due to its sensitivity. They are currently working on linking refuge boundaries to this database, which will be displayed in a web-based map-server environment. Ideally, there will be a photograph for each refuge. Doug indicated that the most important component of geographic information systems is the query capability. He provided a demo of how F&WS is hoping to use GIS with the Real Property Database. Doug is working on securing funding to pursue this project.
Atlantis, Illinois
How to find "Lost Towns" in Illinois

by

Tom Huber

One of the more interesting and enjoyable aspects of being Assistant
Map Librarian at the Illinois State Library is searching for cities, towns,
and villages around the state that have ceased to exist. The mystery is irresistible: When did the place in question exist? Where exactly was it located? Why did it go away? Each one of these questions is a challenge in itself.

Most places that have disappeared were not in existence for very long and often rarely qualified as incorporated places. Whether due to politics, the whims of the population, being bypassed by the railroad, or the disappearance of a stagecoach route, any number of things could bring about a town’s demise. Sometimes diseases like cholera decimated the population and scared survivors away. Other times a better economy or jobs in a neighboring town or county spelled the end, or perhaps the local mine petered out. Due to the shortness of life and the ramshackle nature of new towns, records can be hard to come by. As the state’s infrastructure was very sparse prior to the Civil War, it took time for towns to be recorded or leave records. Recording information on a town was usually lost in the mix to get it established. The establishment of formal government takes time; many towns developed around trading posts or stagecoach stops. Creating a formal municipal government requires a population that wants to establish permanent homes, and trading posts and stagecoach stops were entities that habitually shifted locations. All of these aspects combine to make a researcher’s task all the more challenging. Fortunately, there are a good number of tools available. None of them will help one find all the forgotten towns in Illinois, but when used in conjunction, they can help one put together the pieces or to say conclusively “I just can’t find it.”

The first, main resource in a lost town search has to be James N. Adams' Illinois Place Names (1). Compiled over a number of years, Adams, who worked at the Illinois State Historical Library, began with an interest in Illinois postal history and lots of reference requests for place name information. Much of his research came from U.S. Post Office records. From there he used data from county histories, historic atlases, Rand McNally’s Commercial Atlases, and newspapers. For each entry contains a listing of the county in which it can be found, its classification (town, township, precinct, etc.), when the post office was founded, and, if applicable, when it was disbanded. The entry also lists former and present names of towns. Population totals from Rand McNally are often listed. Lowell M. Volkel, senior archivist at the Illinois State Archives, added an addendum of additional towns in 1989.

Another useful gazetteer, albeit for early Illinois towns, is J. M. Peck’s A Gazetteer of Illinois (2). Originally published in 1834 with a revision in 1837, the book has three basic sections: state-wide, county-wide, and then a section covering towns, settlements, streams, prairies, bottoms, bluffs, etc. Each entry simply lists location with details varying.

For information on old southern Illinois towns Glenn J. Sneed’s Ghost Towns of Southern Illinois (3) is a good resource. Covering all Illinois counties south of and including Jefferson, Sneed lists the towns in each and their “stories.” At the end of each is a section on towns documented, but with no location details.

Another tool is an article by W. D. Barge named The Old Towns of Illinois (4) which lists towns in the state that have had name changes as of 1912. It is simply a list showing the former and present name, county, and whether the town was vacated. The author acknowledges that there may be mistakes and that it is not comprehensive. In 1936, research compiled
by Barge was completed by Norman Caldwell. The results of this research, an article titled *Illinois Place Names* was published in the October issue of the *Journal of the Illinois State Historical Society* (5). While this list is not comprehensive, it does provide an explanation of the name for each town and information on the county where it is located, making it quite useful. A gazetteer worth consulting is *A Gazetteer of the States of Illinois and Missouri* by Lewis Beck (5). Originally published in 1823, its usefulness can be problematical as settlements were few and far between at that time in the central and northern regions of the state.

The Illinois State Library has back issues of *Transactions of the Illinois State Historical Society*, the *Illinois Historical Journal*, and *Illinois History*. These publications have had many, many articles over the years that will mention incorporated places in the state. Some are only mentioned in passing, but often the location or other details are recorded.

Names of townships and township histories can be found in the book *Grassroots Democracy: A Celebration of the Township Officials of Illinois 75th Anniversary, 1907-1982*, written by Frederick Mercer Van Sickle (7). A significant part of the book has to do with the organization, but it also contains individual township histories, origin of township organization, and incorporation dates. A synopsis and map of each county with its townships is included. Not every township is profiled, but nowhere else can one find the township information this book contains.

Another item available at the Illinois State Library is the *County and Township Gazetteer*, compiled by Sheila Kelly and produced by the Illinois State Archives (8). It lists each county, county seat, townships, and other data such as historic information on some of the townships, what they were formed from and when.

Finally there is the *Alphabetical Township Reference*, produced by the Department of Local Government Affairs, Office of Community Services (9). It lists townships, the counties in which they are located, and the municipalities located within each township.

Incidentally, for those who are looking for information on Illinois counties, the Illinois Secretary of State publishes a booklet entitled *Origin and Evolution of Illinois Counties* (10). With both text and maps, it shows how the county system grew in Illinois, the year a county came into being, and a physical description of county boundaries. It also includes an appendix listing the origin of each county's name.

National sources that include Illinois towns in one non-segregated alphabetical list are available, which is terrific if you are not sure a town is in the state. Resources that contain only contemporary information are worth investigating because sometimes old towns are mentioned, particularly if they were swallowed up by a growing nearby city or the town name has changed (some may have had several changes). The *Place Guide*, published by Documents Index, lists counties, townships, and incorporated places across the country (11). Other national gazetteers force one to pick a state, like the *Rand McNally City/County Finder* (12). As the name implies it lists counties and cities within a state, but only those in the present.

The US Geological Survey has an online database called *Geographic Names Information System (GNIS)* (http://geonames.usgs.gov) (13). It contains information on toposraphic features, as well as towns and townships. Like the Rand McNally title above, it contains no historical data. However it does have a great compensatory feature: entries have links to Microsoft's *TerraServer* (http://terraserver.homeadvisor.msn.com) allowing users to view, copy, or download USGS topographic maps or aerial photos (14). Then there is the *Omni Gazetteer of the United States of America* (15) that is, for the most part, a print version of the *GNIS*. The *Rand McNally Commercial Atlas & Marketing Guide* (16), published annually since 1876, includes very small contemporary places. Finally in 1905 USGS published *The Origin of Certain Place Names in the United States* (17). Authored by Henry Gannett and found within the Serial Set (#4864), it details the origin of the name for the towns listed.

Another good resource is the US post office guides (18). They list all post offices within the US in a single alphabetical list, and also break them down by state and county. The location of a post office invariably indicates a city, town, or village. Illinois State Library has an excellent collection of post office guides from 1851 on. Not all depository libraries have this broad a collection; please check with your regional depository or feel free to contact the author.

A further nationwide tool is E. Kay Kirkham's *A Genealogical and Historical Atlas of the US* (19). This work contains many reproductions of historic state maps as well as a place name index (from an 1880 postal guide) and maps showing changes in boundaries and county lines between 1790-1900. Many state-specific gazetteers, much like *Illinois Place Names*, also exist, although they are too numerous to mention here.

Commercially produced historical county atlases and county histories...
are great sources of information on old towns, although they may be difficult to find. The Illinois State Library is fortunate to have county atlases and histories for all of the 102 counties in Illinois. The atlases divide the respective county into townships and show landowners as well as human-made features such as roads, railroads, cemeteries, schools, and of course, incorporated areas. These items were produced between the end of the Civil War and the early years of the 20th century. A book called *Illinois' County Land Ownership Map and Atlas Bibliography and Union List*, compiled by Michael P. Conzen, James R. Ackerman, and David T. Thackery tells which atlases are known to exist and where to find them in Illinois and elsewhere (20). If a 19th century version of one of these atlases does not exist for an Illinois county, a book worth consulting is the *1876 Atlas of the State of Illinois* (21). Published by the Union Atlas Company of Chicago, it contains a map of each county as well as insets for selected towns and cities. Smaller towns and villages are identified (reprints of this atlas are still available from Selby Publishing).

The county histories were produced at roughly the same time as the atlases. Many, but not all, divide the county down into townships and give many details about each. One of these "details" is a list of towns and villages within the township and sometimes towns that previously were in existence. They also contain descriptions of trails, forts, railroads, bridges, etc.

Another source of detailed county cartography is *Land Ownership Maps, a Checklist of Nineteenth Century United States County Maps in the Library of Congress*, compiled by Richard W. Stephenson (22). This item is merely a checklist, which registers existing maps, but does not provide information on owners outside LC. However, LC produced most of the maps as a microfiche set and the Illinois State Library owns the set for all 50 states.

If a search through all of the previous resources and yields no results, worldwide gazetteers might be worth a look. Two worthy examples are the *Columbia Gazetteer of the World* (21) and the *Times Index Gazetteer of the World* (24). There are several online gazetteers that can be very useful as well. *Global Gazetteer* (http://www.calle.com/world/) (25) is a directory of cities and towns around the world. Each nation's listing is divided alphabetically, which is very helpful when not knowing the correct spelling of a name. The *Getty Thesaurus of Geographic Names* (http://www.getty.edu/research/tools/vocabulary/gtn/index.html) (26) is a search engine that lists the counties, townships, provinces, states, etc. in which the town in question is located. The *University of California -- Santa Barbara's Alexandria Digital Library Gazetteer Server* (http://fat-albert.alexandria.ucsb.edu:8827/gazetteer/) (27) has a huge number of places worldwide in its database. Finally, Arizona State University Libraries web site has a page called *Place Name Servers on the Internet* (http://www.asu.edu/lib/hayden/govdocs/maps/geoname.htm) (28), a great directory of place name sites covering the US, the world, even the planets. Unlike the gazetteers mentioned above, these online resources will only contain present-day towns.

Worldwide historical atlases are available, and they are certainly worth a look. At the Illinois State Library we own Tunison's *Peerless Atlas of the World* (29) and IIIf's *Imperial Atlas of the World* (30), both published around 1890, and *Black's General Atlas*, published in 1867 (31). All of these contain contemporary maps of the states and may include towns no longer in existence.

Last but not least, older topographic maps can yield results. The Illinois State Library has a complete collection of USGS 15' topos for Illinois, ranging from 1891 to the early 1950s, which were predecessors of the more detailed 7.5' topos. In addition to incorporated places, these maps show old cemeteries, churches, named schoolhouses, and buildings. In fact many older Illinois maps at ISL are worth investigating. Almost all are facsimiles and date from the founding of the state in 1818. They show towns and villages, but as the scale of these maps is small, the number shown is limited.

Finding lost towns can be just as challenging as finding lost ancestors, and just as rewarding. Locating a populated place can lead to an understanding of why it dissolved, which can then help explain how the township or county around it developed, and why it became the kind of area it is today. Plus the search is a lot of fun to boot. I hope these tools will be of some use in your search for towns that used to be.

Bibliography

About the Author

Tom Huber is Assistant Map Librarian at the Illinois State Library in Springfield, Illinois and author of a web site on General Land Office Maps.
Native American Cartography

as told by

George William Manly

in his account of

Westward Migration in Death Valley In ‘49

conttributed by

Peter Stark

I would like to share with the readers of the Information Bulletin an 1849 account of Native American cartographic expression as written by William Lewis Manly (1). This is not a scholarly article despite the references. It is, however, a good example of how well Native Americans knew and understood their country and, significantly, how they were able to communicate that knowledge to others, even to those who did not understand their language.

First by way of context, in 1849, William Lewis Manly, hunter, trapper, frontiersman (b. St. Albans, Vermont, 1820) attached himself to a wagon train destined first for Salt Lake City and then to California and the Gold Fields. The real import of his memoir is his party’s experience traversing and surviving the hardships of Death Valley during the winter of 1849. As Carl I. Wheat says of Manly’s memoir, “Though not couched in poetic form, Manly’s simple tale is a moving epic of the westward trek, one of the true classics of that massive human experience, — the Gold Rush to California.” (2)

But before that important story unfolds and when still on the Overland Trail, he and six other young men decided to leave the trail float down the Green River, reasoning that the Green would eventually lead to the Pacific and hence to California. We can account for their geographic naiveté by remembering that their experience with rivers up to that point had been with the orderly rivers of the upper Mid-West and the Mississippi. The men had found a large abandoned rowboat formerly used as a ferry buried in the riverbank and after recovering the boat and repairing it, they pushed off. But the Green River was not an easy river to travel. After encountering a range of difficulties over a period of several weeks, Manly and the party began to have second thoughts about the wisdom of their choice of routes to the West. The trio had avoided Indians along the course of the river, but at one point, where there was a large group encamped, they decided to simply put into shore and, come what may, try to learn more about the country. It was a decision that would prove to be most fortuitous, because they encountered the hunting party of Walker, then Chief of the Ute Indians.

George Manly begins his interview with Chief Walker (3):

“I was quite familiar with the sign language used by all the Indians, and found I could get along pretty well in making him [Chief Walker] understand and knowing what he said. I asked him first how many “sleeps” or days it was from there to “Mormonee.” (4) In answer he put out his left hand and then put two finders of his right astride of it, making both go up and down with the same motion of a man riding a horse. Then he shut his eyes and laid his head on his hand three times, by which I understood that a man could ride to the Mormon settlement in three sleeps, or four days. He then wanted to know where we were going, and I made signs that we were wishing to go toward the setting sun and to the big water, and I said “California.” The country far off to the west of us now seemed an open barren plain which grew wider as it extended west. The mountains on the north side seemed to get lower and smaller as they extended west, but on the south or east side they were all high and rough. It seemed as if we
could see one hundred miles down the river, and up to the time we met the Indians we thought we had got through all our troublesome navigation and could now sail on quietly and safely to the great Pacific Ocean and land of gold.

When I told Chief Walker this he seemed very much astonished, as if wondering why we were going down the river when we wanted to get west across the country. I asked him how many sleeps it was to the big water, and he shook his head, pointing out across the country and then to the river and shook his head again; by which I understood that water was scarce, out the way he pointed. He then led me down to a smooth sand bar on the river and with a crooked stick began to make a map in the sand. First, he made a long crooked mark, ten feet long or so, pointing to the river to let me know that the mark in the sand was made to represent it. He then made a straight mark across near the north end of the stream, and showed the other streams which came into the Green River which I saw at once was exactly correct. Then he laid some small stones on each side of the cross mark, and making a small hoop of a willow twig, he rolled it in the mark he had made across the river, then flourished his stick as if he were driving oxen. Thus he represented the emigrant road. He traced the branches off to the north where the soldiers had gone, and the road to California, which the emigrants took, all of which we could see was correct. Then he began to describe the river down which we had come. A short distance below the road he put some small stones on each side of the river to re-present mountains. He then put down his hands, one on each side of the crooked mark and then raised them up saying “e-e-e-e-e-e” as he raised them, to say that the mountains there were very high. Then he traced down the stream to a place below where we made our canoes; when he placed the stone back from the river farther, to show that there was a valley there, then he drew them in close again farther down, and piled them up again two or three tiers high, then placing both fists on them he raised them higher than the top of his head, saying, “e-e-e-e-e-e” and looking still higher and shaking his head as if to say; “Awful bad canyon,” and thus he went on describing the river until we understood that we were near the place where we now were, and then pointed to his tepee, showing that I understood him all right. It was all correct, as I very well knew, and assured me that he knew all about the country.

I became much interested in my new found friend, and had him continue his map down the river. He showed two streams coming in on the east side (5) and then he began piling up stones on each side of the river and then got longer ones and piled them higher and higher yet. Then he stood with one foot on each side of his river and put his hands on the stones and then raised them as high as he could, making a continued “e-e-e-e-e-e” as long as his breath would last, pointed to the canoe and made signs with his hands how if it would roll and pitch in the rapids and finally capsize and throw us all out. He then made signs of death to show us that it was a fatal place. I understood perfectly from this that below the valley where we now were was a terrible canyon, much higher than any we had passed, and the rapids were not navigable with safety. Then Walker shook his head more than once and looked very sober, and said “Indian” and reaching for his bow and arrows, he drew the bow back to its utmost length and put the arrow close to my breast, showing how I would get shot. Then he would draw his hand across his throat and shut his eyes as if in death to make us understand that this was a hostile country before us, as well as rough and dangerous.

I now had a description of the country ahead and believed it to be reliable. As soon after this as I conveniently could, I had a council with the boys, who had looked on in silence while I was holding the silent confab with the chief. I told them where we were and what chances there were of getting to California by this route, and that for my part I had as soon be killed by Mormons as by savage Indians, and that I believed the best way for us to do was to make the best of our way to Salt Lake. “Now,” I said, “those of you who agree with me can follow—and I hope all will.”

McMahon said that we could not understand a word the old Indian said, and as to following his trails, “I don’t believe a word of it, and it don’t seem right.” He said he had a map of the country, and it looked just as safe to him to go on down the river as to go wandering across a dry an desolate country which we knew nothing of. I said to McMahon: “I know this sign language pretty well. It is used by almost all the Indians and is just as plain and certain to me as my talk is to you. Chief Walker and his forefathers were born here and know the country as well as you know your father’s farm, and for my part, I think I shall take one of his trails and go to Salt Lake and take the chances that way. I have no objections to you going some other way if you wish to and think it is best.” McMahon and Field concluded they would not follow me any farther.

I then went to Chief Walker and had him point out the trail to “Mormonee” as well as he could. He told me where to enter the mountains leading
north, and when we got part way he
told me we would come to an Indian
camp, when I must follow some horse
tracks newly made; he made me know
this by using his hands like horses’
forefeet, and pointed the way.

Some of the young men motioned for
me to come out and shoot at a mark
with them, and as I saw it would
please them I did so and took good
care to beat them every time. Then
they wanted to swap guns with me,
which I declined doing. After this the
Chief came to me and wanted me to
go and hunt buffalo with them. I told
him I had no horse, and then he went
and had a nice gray one brought up
and told me I could ride him if I
would go. He took his bow and arrow
and showed me how he could shoot an
arrow straight through a buffalo just
back of his short ribs and that the
arrow would go clear through and
come out on the other side without
touching a bone. Those fellows were
in fine spirits, on a big hunt, and when
Walker pointed out his route to me he
swung his hand around to Salt Lake.

They all spoke the word “buffalo”
quite plainly. I took his strong bow
and found I could hardly pull it half
way out, but I have no doubt he could
do as he said he could. I hardly knew
how to refuse going with him. I asked
him how long it would be before he
would get around his long circuit to
Salt Lake, to which he replied by pul-
verizing some leaves in his hands and
scattering them in the air to represent
snow, which would fall by the time he
got to “Mormonie.” I shivered as he
said this and by his actions I saw that I
understood him correctly.

I told him I could not go with him,
for the other boys would depend on
me to get them something to eat, and I
put my finger into my open mouth to
tell him this. I think if I had been
alone I should have accepted his offer
and should have had a good time. I
gave them to understand that we would
swap with them for some horses, so he
brought up a pair of nice two-year-old
colts for us. I offered him some money
for them, he did not want that, but
would take clothing of almost any kind.
We let them have some that we could
get along without, and some one let
Walker have a coat. He put it on, and
being more warmly dressed than ever
before, the sweat ran down his face in
streams. We let them have some need-
dles and thread and some odd notions
we had to spare. We saw that Walker
had some three or four head of cattle
with which he could kill if they did
not secure game at the time they
expected.

McMahon and Field still persisted
they would not go with us and so we
divided our little stock of flour and
dried meat with them as fairly as possi-
ble and decided we would try the trail.
When our plans were settled we felt in
pretty good spirits again, and one of
them made a corn-stalk fiddle which
made a squeaking noise and in a little
while there was a mixed American and
Indian dance going on; the squaws
joined in, and we had a pretty jolly time
till quite late at night. We were well
pleased that these wild folks had proved
themselves to be true friends to us.

The morning we were to start I told
the boys a dream I had in which I had
seen that the course we had decided on
was the correct one, but McMahon and
Field thought we were foolish and said
they had rather take the chances of
going on down the river than of going
with the Indians. McMahon seemed to
place great stress on the fact that he
could not understand the Indians. “This
Indian may be all right,” he said, “and
maybe he will lead us all into a dreadful
trap. They are treacherous and revenge-
ful, and for some merely fan-cied
wrong done by us, or by some one
else of whom we have no control or
knowledge, they may take our scalps,
wipe us out of existence, and no one
will ever know what became of us.
Now this map of mine don’t show any
bad places on this river, and I believe
we can get down easily enough, and
get to California some-time (6). Field
and I cannot make up our minds so
easily as you fellows. I believe your
chances are very poor.”

The boys now had our few things
loaded up on the two colts, for they
had fully decided to go with me, and I
was not in the least put back by
McMahon’s dire forebodings. We
shook hands with quivering lips as we
each hoped the other would meet
good luck and find enough to eat, and
all such sort of friendly talk, and then
with my little party on the one side
and McMahon and Field, whom we
were to leave behind, on the other, we
bowed to each other with bared
heads, and then we started out of the
little young cottonwoods into the
broad plain that seemed to get wider
and wider as we went west.

The mountains on the northern side
grew smaller and less steep as we
went west, and on the other hand
reached down the river as far as we
could see. The plain itself was black
and barren and for a hundred miles at
least ahead of us it seemed to have no
end. Walker had explained to us that
we must follow some horse tracks and
enter and canyon some miles to the
northwest. He had made his hands
work like horses’ feet, placing them
near the ground as if following a trail.
We were not much more than a mile
away when, on looking back, we saw
Chief Walker coming towards us on a
horse at full speed and motioning for
us to stop. This we did, though some
of the boys said we would surely be
marched back and scalped. But it was
not for that he came. He had been watching us and saw that we had failed to notice the tracks of the horses he told us about, so he rode after us, and now took us off some little distance to the right, got off his horse and showed us the faint horse tracks which we were to follow and said "Mormonee." He pointed out to us the exact canyon we were to enter when we reached the hills, and said after three "sleeps" we would find an Indian camp on top of the mountain. He then bade us good-bye again and galloped back to his own camp.

We now resumed our journey, keeping watch of the tracks more closely, and as we came near the spur of the mountain which projected out into the barren valley we crossed several well-marked trails running along the foothills, at right angles to our own. This we afterwards learned was the regular trail from Santa Fe to Los Angeles (7). At some big rocks farther on we camped for the night, and found water in some pools or holes in the flat rocks which held the rain.

Reading people of today, who know so well the geography of that American continent, may need to stop and think that in 1849 the whole region west of the Missouri River was very little known. The only men venturing enough to dare to travel over it were hunters and trappers, who, by a wild life, had become used to all the privations of such a journey, and were shrewd as the Indians themselves in the mysterious ways of the trail and the chase. Even these fellows had only investigated certain portions best suited to their purpose.

The Indians had the reputation of being blood-thirsty savages who took delight in murder and torture, but here, in the very midst of this wild and desolate country we found a chief and his tribe, Walker and his followers, who were as humane and kind to white people as could be expected of anyone. I have often wondered at the knowledge of this man respecting the country, of which he was able to make us a good map in the sand, point out to us the impassable canyon, locate the hostile Indians, and many points which were not accurately known by our own explorers for many years afterwards. He undoubtedly saved our little band from a watery grave, for without his advice we would have gone on and on, far into the great Colorado canyon, from which escape would have been impossible and securing food another impossibility, while destruction by hostile Indians was among the strong probabilities of the case. So in a threelfold way I have for these more than forty years credited the lives of myself and comrades to the thoughtful interest and humane consideration of old Chief Walker."

At the time of this encounter, Chief Walker was on friendly terms with the Mormon settlers, but later in 1853 he waged a protracted war with the Mormons, which lasted over a year. Chief Walker died in January 1855. Manly does not mention the fate of M.S. McMahon or Richard Field, the two who refused to go with the others out of the canyon of the Green River to the Salt Lake settlements. Manly and his four companions arrived safely at Salt Lake just as a wagon train headed for Los Angeles was forming under the expert leadership and guidance of Captain Jefferson Hunt.

Writing his memoir from his home in San Jose in the early 1890s with the geography of the West, its rivers, mountains, and valleys fully known, Manly could justly state that he credited his life to the friendly and humane invention of Chief, and Cartographer, Walker.

Bibliography - William Lewis Manly (arranged by date)

Manly, William Lewis, (b. 1820), 1894. Death Valley in '49: an important chapter of California pioneer history, the autobiography of a pioneer, detailing his life from a humble home in the Green Mountains to the gold mines of California; and particularly reciting the sufferings of the band of men, women and children who gave "Death Valley" its name. San José, Calif.: The Pacific Tree and Vine Co.

Manly, William Lewis (b. 1820), 1929. Death Valley in '49: an important chapter of California pioneer history, the autobiography of a pioneer, detailing his life from a humble home in the Green Mountains to the gold mines of California and particularly reciting the sufferings of the band of men, women and children who gave Death Valley its name, foreword by John Steven McGroarty; illustrated by Alson Clark. New York; Santa Barbara: W. Hebbert.

Manly, William Lewis (b. 1820), 1977. Reproduction of Death Valley in '49: important chapter of California pioneer history: the autobiography of a pioneer, detailing his life from a humble home in the Green Mountains to the gold mines of California, and particularly reciting the sufferings of the band of men,
women, and children who gave "Death Valley" its name. Bishop, Calif.: Printed and distributed by Chalfant Press.

Notes and References

(1) Manly, William Lewis, 1894. Death Valley in '49: important chapter of California pioneer history, the autobiography of a pioneer, detailing his life from a humble home in the Green Mountains to the gold mines of California; and particularly reciting the sufferings of the band of men, women and children who gave "Death Valley" its name. 1st ed. San Jose, Calif.: The Pacific Tree and Vine Co.

(3) This excerpted passage is from the 1927 reprint of Death Valley in '49 (Chicago: R.R. Donnelley and Sons Co.) pages 104-115.

(4) Salt Lake City.

(5) These could be the Colorado and the San Juan Rivers

(6) The second time McMahon refers to a map in his possession, however, the author does not describe it nor does he admit of ever seeing it himself.

(7) Manly could mean the Santa Fe to Monterey (Calif.) [not Los Angeles] trail partially blazed by Dominguez and Escalante in 1776.

About the Author

Peter Stark is a long-time WAML member. Formerly at the University of Oregon, Peter is now Special Collections Acquisitions Librarian for the Anglo-American Acquisitions Division at the Library of Congress.
Reviews of Atlases, Books and Digital Resources

Edited by

Kathy Rankin
University of Nevada, Las Vegas

In 2000 ESRI, the maker of the popular GIS software packages ArcView and ArcInfo, launched a new product called ArcGIS Desktop. ArcGIS Desktop is said to include three products: ArcView, ArcEditor, and ArcInfo, though it is really more like one product that is available at three levels. The basic level, or ArcView level, is the same in all three. ArcEditor and ArcInfo simply have progressively more functionality. This timely book, published by ESRI Press, is a workbook designed to teach the fundamentals of the basic level (ArcView), which is common to all levels of this software. It comes with two CDs: one with a fully functional trial of ArcView 8 and another containing the data needed for the exercises in the book.

First, it is important to note that this book is not intended to be an introduction to GIS. It does not cover the theory or the specialized vocabulary of GIS and so users must already have this knowledge or else use this book in conjunction with a good introductory GIS text. This book is instead a lengthy tutorial on ArcGIS Desktop. In a format similar to its predecessor, *Getting to Know ArcView GIS* (ESRI Press, 1996), this book is made up of a series of exercises that consecutively build on earlier lessons. After a cursory description of GIS, the book focuses exclusively on software exercises. These are well written, easy to follow, and heavily illustrated with color screen shots. They begin with lessons on displaying and navigating a map and go on to querying, editing features, geocoding, making maps for presentation, and other topics. A variety of scenarios and data sets keeps the exercises from being repetitive. The exercises don’t have to be done in order, though they follow a logical sequence. By going through the entire book, users will utilize many of the features of ArcGIS Desktop and work with a variety of data types. Although each level of ArcGIS includes three parts (ArcMap, ArcCatalog, and ArcToolbox), this book focuses primarily on ArcMap, with a few exercises introducing ArcCatalog.

The weakest part of the book is the index, which simply mirrors the book’s organization and includes few entries or cross-references. For example, histograms are covered in the “Classifying Features and Rasters” chapter, and so are in the index under the C’s for “classification - histogram, adjusting” rather than under H for “histogram.” The real problem, though, is the fact that most entries give the wrong page number(s)! They are generally off by 2-4 pages. For example, the entry for “Map documents - exporting as images” should list page 488. Instead it refers to page 492, which is not only the wrong page but also the wrong chapter. Because of the poor index and the lack of a glossary, this book won’t work well as a reference manual.

Overall, *Getting to Know ArcGIS Desktop* is an excellent resource for people who want to learn how to use the software. However, the CDs that accompany it pose potential problems in a library setting. The first problem is that the trial copy of ArcView 8 must be registered and the registration expires after 180 days. Thus, libraries can’t circulate the CD since only the first user can register it. Installing the CD in the library wouldn’t help much, either, since it expires in 180 days. This problem is solved if the user has other access to ArcView, ArcEditor, or ArcInfo; the exercise data can be used with any licensed copy of the software. The second
problem is the exercise data CD, which has a license agreement restricting its use. Librarians buying this book for the library’s collection will need to investigate the terms of the license. Provided that these issues are dealt with, this book would be a useful addition to a library’s collection.

Megan Dreger
Government Publications & Map Librarian
San Diego State University
San Diego, CA

Creation of the United States-Mexico border in the mid-nineteenth century was a seminal event in the history of the west, one that drastically redefined political, cultural, and economic space in the region. It also was an important event in the history of boundary making and cartography. La Gran Línea is a serious scholarly examination of the extraordinary binational efforts to locate, mark, and map the new boundary as mandated in the 1848 Treaty of Guadalupe Hidalgo that officially ended conflict in the U.S.-Mexican War. Although an operating thesis is not offered, nor is a specific research question identified, the general intent of Rebert’s study is to critically assess the boundary survey as a kind of “mapping enterprise” (p. xiii). More specifically, the book seeks to describe the efforts of surveyors and cartographers from both countries, compare the boundary maps they produced, and finally to reflect on the significance of their cartographic contributions to boundary history.

To accomplish its goals, the work is organized into an introduction and six chapters, and includes as well an appendix of map authorities from both boundary commissions, an extensive notes section arranged by chapters, and an adequate, if not exceptional, bibliography. Significantly, it also includes two index maps, four location maps, two treaty maps, and no less than 35 original boundary maps, most full-page in size. In regard to subject matter, the chapters are broadly concerned with the field surveys; the mapmaking efforts at the boundary office in Washington D.C.; consultation between the two commissions regarding surveys along the Colorado River as well as the Pacific and Gulf coasts; binational cooperation in both the surveying and mapping of the 700-mile land boundary; the controversy surrounding surveys of the Rio Grande; and lastly the final maps and the vexing issue of their permanence. As the story unfolds, chapter by chapter, one is impressed by the sheer magnitude and difficulty of the boundary project itself. Indeed, as Rebert details, all the principals concerned—from the field surveyors to the boundary commissioners—had to overcome daunting physical, political, and financial obstacles to accomplish their charge. It is a tale of treaties and commissions, debates and delays, of controversies and compromises, all set against a backdrop of political intrigue, maneuvering, and hegemony. As one can easily imagine, there were strongly contrasting, and often highly competing, nationalistic motives that surfaced at every stage of the process. It is a compelling but challenging story to convey how these obstacles and countless others, including technical cartographic issues, were overcome and the boundary ultimately drawn and agreed upon by both nations.

Unfortunately, La Gran Línea is neither entirely successful in conveying the significance of the event, nor does it shed much light on the borderlands as a place from either historical or contemporary perspectives. The book is not without its strengths, however. Clearly, it shows devoted archival research with its extensive use of primary materials, including the original boundary surveys and maps themselves. Its detailed discussions of the key personalities and issues of evolving concern in the boundary making process, particularly its focus on mapping procedures, methods, and instruments, contribute in meaningful ways to our understanding and appreciation of how establishment of the boundary was in fact carried out in the field and in the cartographic offices. In a manner of speaking, Rebert’s lavish attention to details on selected topics is both a strength and a weakness; it gives depth and substance on the one hand, but at the expense of clarifying the big picture or framing the work in the context of time and place on the other hand. On finishing the book, one is left with little appreciation of the historical dynamics of the mid-nineteenth century or the character of the borderlands as a region; the contribution the study makes to the history of cartography is also vague. Not only does the work bog down, it also loses focus and runs together as the author wanders from one theme to another. This problem is compounded by Rebert’s rather dense, uninspired prose, as well as the complete absence of chapter headings and subheadings that might have brought a greater internal organization and cohesion to the subject matter within the respective chapters. And finally, the illustrations of the original boundary maps, while certainly of historical value, are so faded and poorly reproduced that they add disappointingly little to the body of the study.

Its shortcomings notwithstanding, La Gran Línea deserves a place on
the shelves of a research library, and in the personal collection of the committed borderlands scholar. It is a solid piece of historical research on an important topic.

James R. Curtis
Department of Geography
California State University, Long Beach

Savoie, Donat (ed.). *Land Occupancy by the Amerindians of the Canadian Northwest in the 19th Century, as Reported by Émile Petitot: Toponymic Inventory, Data Analyses, Legal Implications*. [Ottawa]: Indian and Northern Affairs Canada; [Edmonton]: CCI Press, 2001. 262 p. Folding maps, + 5 folding maps in pocket. $75.00 US or Cdn. Occasional publication (Canadian Circumpolar Institute) no. 49. ISSN 0068-0303. ISBN 1-896445-20-9

This book is a translation of *L'Occupation Territorial chez les Amérindiens du Nord-ouest Canadien au XIXe Siècle*, a report prepared for the Northern Social Research Division of the Department of Indian and Northern Affairs, Canada, published in two parts in 1979 and 1980. The editor's involvement in the study of Petitot's work may be traced back to an earlier work with a similar title *Les Amerindiens du Nord-Ouest Canadien au 19e Siècle* by Émile Petitot (Ministère des Affaires Indiennes et du Nord Canadien, c1970) of which he was also editor. The studies leading to these reports were launched in response to a request from Chief Daniel Johnson of the Yukon Indian Brotherhood (now the Council of Yukon Indians) in 1977, for copies of "Émilie Petitot's various scientific works and the information he had gathered on the occupation and use of the land by the inhabitants of these northern regions".

The request stemmed from the aboriginal land claims by various groups in the Northwest who are dealing with the exploration for and planning for the future extraction and shipment of oil and gas reserves located beneath their traditional lands. The building of a Mackenzie Valley pipeline from the Arctic Ocean to Alberta, necessary for such shipment, will traverse these lands. Settlement of questions of ownership of the land base, and the resources beneath, will greatly facilitate negotiations in this matter. Both future royalties and employment of native workers are involved in these negotiations. Because there is extensive overlap in historical use and occupancy of the lands involved, both between Dené/ Métis groups and between these groups and Inuvialuit, a great deal of work has been done to arrive at the fairest possible settlements. In one concluded claim "Contending Native parties were able to resolve their differences in that area [the Arctic coastal and adjacent inland area], thereby making possible a satisfactory completion of the first Comprehensive Native Land Claim Settlement in the Northwest Territories. In March 1984 Cabinet approved "The Western Claim" agreement and it was ratified in Parliament in June 1984." (Anonymous, 1984) It is not unreasonable to suggest that research into indigenous place names contributed significantly to a more accurate understanding of the native people's presence in the Western Arctic and to a fairer permanent solution in the overlap areas." (William C. Wonders, "Native Claims and Place Names in Canada's Western Arctic". *The Canadian Journal of Native Studies*, VII, 1 (1987): 111-120.) Many claims remain to be settled.

Chief Johnson was quite right in asking for copies of these works or a summary of same, since, although they received little attention in years following Petitot's departure from the region in 1883 there was, during the last 25 years of the 19th century, wide recognition of his important contributions in the field of anthropology, ethnography, geography, geology, lexicography, and zoology, based on his activity among the Amerindians of Northwestern North America. In 1875, Petitot's scientific contributions were recognized by the award of a medal from La Société de Géographie de Paris, while in 1883 he was awarded the Back Prize by the Royal Geographical Society of London, England. Despite his accomplishments and his awards, there is no entry under his name in the Canadian Encyclopedia. It has been postulated that his work has been overlooked partly because almost all of it was published in the French language in France. Petitot was a Roman Catholic priest of the Missionary Oblates of Mary Immaculate (O.M.I.). He was twice sent back to France, once for a homosexual relation with a sixteen-year-old native boy who traveled with him, and finally because he married a aboriginal woman near Cold Lake, Alberta. Both these and other indiscretions were in all likelihood due to extended periods of isolation and extreme exertion associated with his constant travel in the North. He was considered to be temporarily insane, and so it seems was the case, for each time he was given rest and association with people with whom he could have intelligent conversation, he recovered.

The book is divided into four major chapters: 1. Émilie Petitot: his life and works. 2. Land use and occupancy in the Athabasca-Mackenzie by various native groups, as reported by Émilie Petitot. 3. Toponymic inventory. 4. Analysis of toponymic data and legal implications. Chapter 3 consists of all the place-names found in Petitot's writings, while the legal dimensions
of place names in settling land claims draws on many cases in other countries including the United States, countries of Africa and others where English law or precedent might be cited. The toponymic inventory is prefaces by two folding maps: Toponymie Autochtones de la Région Athabasca-Mackenzie (Classification Linguistique)=Indigenous Toponomy of the Athabasca-Mackenzie Region (Linguistic Classification), and Occupation de la Région Athabasca-Mackenzie par les Groupes Autochtones, selon Émile Petitot=Land Occupancy of the Athabasca-Mackenzie Region by Native Groups, according to Émile Petitot.

Each of the maps is in two sections, north and south, printed recto and verso on succeeding pages. Rachelle Castonguay, compiler and editor of the chapter, refers correctly to these maps as map 2 and map 3, but no map number appears on these or any of the other maps bound into the book or folded and placed in the pocket inside the back cover. Though the titles of the maps are bilingual, the legends are in French only. Each map has a ratio scale given as 1:2,000,000 and a bar scale, which, when checked, reveals the true scale to be ca. 1:4,700,000. This results from the reduction of the original colored maps, which were in fact at 1:2,000,000. The only separate colored version 1 have seen is of the first of the two sheets mentioned and that is held by the William C. Wonders Map Collection at the University of Alberta. Maps 2 and 3 were published as four colored sheets, printed for the earlier French language publication of which this is a translation. Although the colored map had no information on where or by whom it was created or published, the black and white maps included here show that they are a product of the Laboratoire de Cartographie, Département de Géographie, Université Laval, and mostly drawn by Raymond Fortin. The almost 2.5 times reduction has rendered much of the type on the map unreadable without the aid of a magnifying glass.

Each location on the first map is identified by a circle in which, whether open or shaded, indicates whether the site is associated with one, two or more Amerindian groups. Next to each circle is a number and a French language descriptor associated with the feature type, e.g., montagne, rivière, etc. These numbers, when accessed in the toponymic inventory, give the name and reveal what Petitot recorded about that place. Each number on the map is also assigned a lower case letter from (a) to (d) in parentheses, indicating whether the location's use was permanent, seasonal or regular, episodic, or undefined or uncertain. Outset on this map are several small maps, each showing the distribution of one Amerindian group. The second map, that of land occupancy, combines and seems to extend the distributions shown on the seven small maps. Because the map is in black and white with only different densities of screen indicating different groups (no patterns involved) and there is not sufficient difference in density of several screens, the areas of overlap are impossible to distinguish. Added to this is the fact that place names occurring within the darkest area, that of the Esquimaux, are mostly unreadable. Symbols used to indicate the type of use made of the land at each place name, are visible, in part due to a white outline for each symbol. The legend for this map distinguishes activities recorded during Petitot's travels in the area between 1862 and 1883, and those implied from toponymic evidence, to have been carried on by a different group prior to his arrival in the area.

Also contrary to normal practice, Chapter III begins with a list of the sources for the toponymic inventory, both textual and cartographic. Seventy items, over half of them letters, were found to contain relevant information. Although the focus of the toponymic inventory is the Athabasca-Mackenzie region, "some peripheral names are included where information relating to these locations was considered useful for understanding the use and occupation of the land by the various Amerindian groups.... For example, some Alaskan names were included, which Petitot mentioned as locations where the Tchiglit Eskimos of the Mackenzie engaged in trade."

In addition, five maps, all but one drawn by Petitot himself, reproduced in their original size, are folded and inserted in a pocket inside the back cover. The fifth map, from the Proceedings of the Royal Geographical Society, 1883 is based on Petitot's surveys. These are also black and white and as a result a pair of older eyes has had some trouble distinguishing between areas of land and water on several of the maps. Though all but one indicate the publisher, there is no indication on them, with the exception of the RGS map, as to the title of the publications in which they originally appeared. I do think this should have been added to the images prior to printing. This information does appear with some errors, in the list of sources. Carte des Expéditions chez les Esquimaux is said to be from Les Grands Esquimaux, but actually accompanied an article titled "Géographie de l'Athabaskaw-Mackenzie et des Grand Lacs du Bas-sin Arctique" in Bulletin de Société de Géographie, 6e Serie, v.10, 1875. The map from the incorrectly cited Les Grand Esquimaux is the unnumbered map 1 printed within the text. The copy used appeared in another Canadian Circumpolar Institute Occasional Paper titled Among the Chiglit Eskimos, Second Edition
in parentheses. The legend to these maps indicates that, in this case, the letters refer to the reliability of positioning. Users should be careful not to confuse these with the lower case letters used on map 2. The use of upper case letters or a different set of four letters would have been more appropriate. The base maps upon which this information was drafted are the 1:1,000,000 International Map of the World sheets extending from Edmonton and Prince Albert northwest to the Arctic Ocean. These were originally reduced to 1:2,000,000 and bear that ratio scale statement but a check of the bar scales indicates them to be as stated earlier in this paragraph. All information plotted on these maps remains readable without the aid of a magnifying glass.

Petitot was also a very competent artist and produced about 400 drawings of people, with their names, tools they used, houses, tents and igloos, each with its location. Fifteen of these are included in this book. He was known to many native peoples as “Henning Klay”, the Father who is always writing, since he continuously recorded his observations on his many travels. At least two of his colleagues complained to their Bishop that “he is never at the Mission, but always traveling”. He also designed, built and elaborately decorated the interior of Our Lady of Good Hope, which was designated as a National Historic Site in 1977, and which was restored using his original drawings in 1993.

Chapter IV on legal implications sets out the way in which this volume will prove useful. The editor, Donat Savoie, in the film mentioned earlier, J, Emile Petitot... states “The present Land Claim Policy of the Government is that any indigenous group has to demonstrate they were occupying the land and they were using it. Now most of these societies have an oral tradition. Nothing is written. So you have to go with your informers, but to go back to the 19th century, you’d better have something in writing to make it easier to show that your ancestors were occupying the land, and that’s what Petitot did. The richness of the material is that you can see it. ... We are able to see very well ... where they were and what they were doing. They were hunting caribou, fish, or whatever.” The author of this chapter, Geoffrey S. Lester, notes that “While our knowledge of aboriginal land use and occupancy in the region traversed by Petitot is already quite extensive, exploitation of the hitherto untapped source of information will fill out that knowledge in greater depth and supplement it in the important practical context of demonstrating the argument from aboriginal rights; and, also, that the aboriginal inhabitants of the Mackenzie Valley region represented by the Northwest Territories Indian Brotherhood and the Committee for Original Peoples Entitlement, the subject of Petitot’s observations, have a traditional interest in the lands and waters which they are using and occupying today.” While it is possible to make one’s way through such run-on sentences, I found this chapter tough going. The footnotes to this chapter provide a fascinating tour of colonial regions where such problems have been more or less sensitively dealt with. The arguments are presented and discussed and social justice issues touched upon but not always resolved. Such issues trouble Canada and its provinces even now and the struggle for control over land and resource issues are very much before us and we know that this is true in other countries as well. We can only hope and pray that more responses such as this to Chief Daniel Johnson’s request are forthcoming.
as shortcomings in the book. I hope also that I have given readers a sense of how important this book may be for Canadian Studies, Native Studies, Northern Studies, and Historical Geography programs. The five reproductions of maps from the 1870s and 1880s may also have some use in the study of the History of Cartography as well, although I think slides of originals would be better.

Ronald Whistance-Smith
Curator Emeritus
William C. Wonders Map Collection
University of Alberta
Edmonton, Alberta

Bob Parry and Chris Perkins's *The Map Library in the New Millennium*, a collection of edited essays, arrives as a Janus-like offering. The book concentrates on describing possible, if not probable future scenarios in a variety of areas of concern to map libraries in light of past, and current practices and philosophies. The editors have assembled an international group of thirteen writers plus themselves in an admirable effort that focuses on issues of great import to the future of map librarians and the collections for which they have responsibility. Six of the contributors are from the UK, five from the USA, two from the Netherlands, and one each from New Zealand and Canada. Thirteen come from academic library backgrounds, one is a map publisher, and one is a map dealer.

The essays comment on a broad array of topics although the majority deal with technology or the effects of technology on map libraries. Most contributors try to prepare us for an uncertain future where what we are certain to confront are continuing technology changes. Many libraries are ill prepared for the onslaught of rapid change and are finding it difficult to cope. A discussion of the additional skills required of map librarians engaged in delivery of a GIS service are enumerated and include the acquiring, cataloging, managing, massaging, and distributing of digital datasets. Map librarians in North America are particularly singled out as moving forcefully in this direction.

It is noted that user expectations will also rise now that digital mapping is everywhere, but unfortunately there is not a commensurate depth of digital holdings within many collections to meet these expectations. This situation is eased somewhat in the United States for those libraries that are fortunate enough to be part of the Federal Depository Library Program.

Nearly all contributors emphasize that the future demands that map libraries direct their collecting efforts into acquiring, or at least providing access to, digital geospatial data that can, if one possesses the necessary software and expertise, be used to create a visualization of the geospatial data in the form of a map product. Pip Forer, a professor of geography in New Zealand, writes about the challenge of this new paradigm as "moving from mapped data to mappable data as the basis for the collection, and from cartophiles to spatial thinkers as the basis of the clientele". (pg. 194)

Several contributors make the point that digital collections make it easier, at least in principle, to promote the traditional library ethos of sharing resources. The web as a mechanism for distributing data is at present problematic, but does hold great promise for disbursing large data sets given improvement in bandwidth and high speed connectivity.

Many of the writers acknowledge the accompanying difficulties associated with the changes that are occurring in the world of cartography including dissemination, managing, storing, archiving, and outputting of spatial data. They believe that in the long run map librarians will be able to overcome these difficulties with the aid of newer, better, and ultimately less expensive technology. Since many maps are no longer easily available in paper this means acquiring large format printers that in effect will force librarians to provide a quasi maps on demand service. Is this service to be client initiated or are map librarians and staff to provide the expertise to allow patrons to walk away with a paper product?

Few contributors sound any kind of alarms about this unstoppable movement toward an increasingly digital future. One, a map curator, does not argue against the digital tide, but does make the case for selectively transferring paper maps into digital preservation copies with value added by georeferencing them at the same time. Decisions on what to transfer to a digital copy will be difficult and the process time consuming and very expensive. Financial resources for doing so will in all likelihood compete with the need to acquire new resources. They analog or digital. Another contributor, a concerned paper map aficionado, is a map seller whose business relies on selling reprints of topographic maps originally published by the Ordnance Survey, but who genuinely favors the utility of paper maps and touts their importance as the "core cartographic resource" for most consumers. While I try to collect digital datasets of mappable data, I
must echo the notion that most of my clients are still in search of traditional paper maps and have no interest in acquiring the skills to use available data to create their own maps using a GIS software program. While this situation may change over time I do not see any headlong rush to abandon the use of our "legacy collection" of paper maps.

The essayists in this collection have described the challenges ahead for map curators. It seems like we can look forward to a bumpy ride full of joys as well as trials and tribulations of all sorts. I am reminded of the information I received recently from a colleague that he has been directed to shrink his collections by eighty-five percent. He is no stranger to purchasing digital data, but now feels even greater pressure to move in this direction. There are suggestions that we who collect maps must forge different kinds of relationships with the producers of maps. In the past I have been able to get maps from local and regional government agencies when they were issued as paper products. Now I find that because these same agencies hope to initiate new revenue streams or feel that in some way they must protect their data they will not provide, that is, give or sell me, the same mappable data. And when I can still get some of the paper maps from these same agencies, they are generated from a GIS and printed on inferior paper using inferior inks.

This book should be required reading for all map librarians and curators. It belongs in all libraries that have as part of their mission the collecting of maps. This collection of essays is a provocative and thoughtful examination of the future and states up front that it is not to be taken as a primer on map librarianship, but as a glimpse into the future of our profession. I might not agree with everything it purports to point to in its musings on the future, but it provides food for thought in ample amounts.

David Deckerbaum
Bruman Map Collection
Reference & Instructional Services
Young Research Library
University of California, Los Angeles

The Dictionary of GIS Terminology includes over 1,000 terms from the fields of geography, cartography, mathematics, and computer science. All of these terms have some application to the field of GIS theory and its applications. The book has a short explanation of its contents on the back cover. The dictionary is split into two sections. The first section, comprising 112 pages of the book, is the dictionary. The second section is a two-page list of acronyms.

The entries include a definition, and sometimes the field from which the term has been taken (such as coordinate geometry or remote sensing), comparison notes ("Absolute coordinates ... Compare relative coordinates"), and "see" references. There are occasional graphic illustrations.

The book's stated purpose is to define GIS terminology and in doing so, at times uses definitions that do not readily come to mind for familiar words. The first definition of "edge" is: "In a TIN, a line that connects two nodes." In a standard dictionary, all words used in the book should be defined. This is not to be expected in a subject specific dictionary, but one would expect all technical terms used to be explained. This is not always the case. The term RAM is used in the description of a buffer ("...A storage area, usually in RAM..."), but is not explained under its own definition. The definition for Clarke spheroid uses the term NAD 1927 in its text. NAD 1927 is found later in the book although not under NAD. It is listed after the spelled-out term, North American Datum of 1927 (NAD 1927, NAD27) making it difficult to find without knowing what the term stands for in the first place.

When necessary, the definitions include related terms in blue type. The definition of "eccentricity" begins with "Also ellipticity..." Ellipticity is included on the next page with a note stating, "See eccentricity." This kind of thoroughness is not consistent across all such definitions. The second definition for chart begins thus: "2. Also graph. A diagram showing..." with the word "graph" in blue. There is no corresponding "see" reference under "graph" to lead one to this definition. The word "graph" does not appear in the G section of the book.

Two pages of acronyms are included at the end of the dictionary with about
60 terms included. A much more extensive list appears on the web: the Dictionary of Abbreviations and Acronyms in Geographic Information Systems, Cartography, and Remote Sensing (http://www.lib.berkeley.edu/EART/abbrev.html) by Mary Larsgaard and Phil Hoehn.

The online ESRI library includes the Glossary of GIS Terms (http://www.esri.com/library/glossary/glossary.htm). The online glossary includes about a third as much content as the book and does not have exactly the same words. This version also tends to include more words that are specific to ESRI software, such as ArcStorm, ArcTools, and ACODE file, just in the A's.

The AGI (Association for Geographic Information) also hosts a GIS dictionary on the web (http://www.geo.ed.ac.uk/agidict/welcome.html) which includes over 980 terms compiled from over 189 different sources. Four of these sources were created by ESRI, including the online GIS glossary. While this source does include many of the same terms as the ESRI book, the most recent source was up-to-date as of 1999.

The Dictionary of GIS Terminology would be a useful addition to a library that supports an active GIS program. Compared to online sources, it is the most comprehensive and up-to-date source for a wide range of terminology. Those libraries that need to know specific terms on an infrequent basis will find the AGI site and the Acronym databases satisfactory to meet their needs.

Julie Sweetkind-Singer
GIS & Map Librarian
Stanford University
Stanford, California

In their excellent presentation at the Fall 2001 meeting of the Western Association of Map Libraries in Portland, William Loy and Stuart Allan passed around some very impressive sample pages and spoke about the development of the 2nd edition of the Atlas of Oregon. Neither prepared this reviewer for the sheer delight of opening the pages of the atlas itself. It is a feast for the eyes. Stuart Allan's work is known to many of us through the works of his company Allan Cartography. He has rightly pointed out that it is rare indeed for a team like theirs to get a second chance at such an undertaking, and with that, a chance to get it right. In this reviewer's opinion, they did succeed in doing so.

The atlas is arranged in four sections: Human Geography, The Economy, Physical Geography, and Reference Maps. Several other subject atlases of Oregon exist in electronic or published forms: breeding birds, forests, gubernatorial elections, lakes, wildlife, wild forests, and a historical atlas, but it is only within in a compendium such as this that a reader can see that "people, through their work, are always in physical relation to their environment" (Rick Salutin, Canadian Geographic, September/October 2001, p. 60). We are told the story of the peopling of the territory and the state, its growth, and the effects of the European occupation of the lands by people of European stock on the aboriginal peoples. Maps and text explain how people earn their living, what recreation facilities are available to them, and how they get around. This story leads into a description of the physical setting in which these lives are lived.

National, state and provincial atlases, by their very nature, tend to be inventories of the natural and human resources within the borders of the particular jurisdiction for which they are created. As such they frequently present a dizzying array of small maps of populations and products at one or more times in history, but especially as of the most recent census. One of the tricks in the creation of such an atlas is therefore to find ways to satisfy the user who is looking for just that kind of information and the more general user who may be numbed by such a display. This atlas provides enough general interest information in an attractive format that it should become a compelling purchase far beyond the market for an up-to-date inventory of the state.

The first subsection of the Human Geography section is titled "Oregon in the World". It consists of three maps, the first of which is a double-page spread showing, as a shaded relief map, western North America as viewed at an oblique angle from above the equatorial Pacific Ocean. The only political boundary on the map is that of Oregon. The capital cities and other major cities in the western United States are shown, but a peculiar mix of cities in western Canada are also included. One city each is shown in each of the four western provinces. The capital cities of British Columbia and Alberta are omitted, while the largest and most economically important city in Saskatchewan is omitted. This map is followed by a double-page spread, which includes a rectangular projection map of the World showing both prehistoric migration routes into the Americas and European settlements and outposts before 1800, and a stereographic projection of the world centered on Portland. The remainder of this space is occupied by the first
of a series of concise essays, this one titled "Human Settlement of Oregon". Such essays serve to assist the reader to get the most from the maps presented. In the best of all possible worlds, maps alone tell a story. As frequently stated, to represent purely as text what is shown on most maps would take a book. Hence, an atlas is in effect a library in graphic form. But alas, the world is not populated solely by persons familiar with the language of maps, and many of us who may be familiar with that language do not have the background to extract all that a cartographer might wish to tell us in his map. Thus, supplementary text can assist both the cartographically illiterate and the literate to make the most of each presentation.

One feature that caught my attention was the willingness in at least some situations other than historical to include areas beyond the state in order to make a clear statement in regard to a subject. Two of these involve the absence and near absence of a phenomenon within the state. In the first category is the map of Petroleum and Natural Gas Distribution. This map of western North America extends from Texas to Alaska and shows Oregon to almost totally devoid of these resources while showing the pipelines that bring oil and natural gas into the state. The second is, surprisingly to me, earthquakes. It appears from the maps presented to be the most seismically stable of the Rocky Mountain and Pacific States. Some other maps, which place the Oregon situation in a broader context, portray aboriginal culture areas and languages, exploration, subduction and volcanism, and geologic evolution.

The reference maps section consists of 43 sectional shaded relief maps covering the more populated areas of the state at a scale of 1:150,000. Most of these sectional maps have an inset map showing the historic growth of towns and cities within that area. For those sections in which the density of communities was too great to allow an inset, separate maps have been provided. The scale of these "Historic Growth" maps is 1:333,333. A graphic index and legend to the sectional maps is included at the head of this section. Included in the legend are eight classes of land cover, various water features, road classes, types of boundaries shown, type sizes used for communities in different size ranges, and a group of "other symbols".

A useful inclusion are indexes to the 1:24,000 and 1:100,000 topographic series sheets covering Oregon that include county boundaries and a referenced list of those counties. No more the desperate search for a misplaced index. These indexes are spread over six pages so as to maintain easy readability. A four plus page "Reference Map Gazetteer" is followed by a three plus page essay on Oregon Place Names, which extends the coverage of this topic first presented on pages 24 and 25 of the atlas. The latter offers maps of "Physical Features" and "County and County Seat Names" along with origins for a selected group of the former and a complete list of the latter. The essay, which appears on pages 288 to 291, while repeating a few of the place name origins accompanying the maps, goes much further by discussing the origin of names of physical features and places in historical periods: Native American, Exploration, Pioneer, Indian Wars and Mining, Homestead, and Modern.

The atlas concludes with an extensive list of sources and an index of topics and names. Sources are grouped by map, which will enable students and researchers to readily access the background material, either to investigate what other interpretations might follow from the data, or to extend the analysis of that material.

Normally a review of an atlas or other book in these pages includes a recommendation by the reviewer of the suitability of the publication for purchase by map libraries. This atlas is probably already in most of the libraries within WAML's principal region. Suffice it to say that the Atlas of Oregon, 2nd ed. is the essence of what a map library is all about.

Ronald Whistance-Smith
Curator Emeritus
William C. Wonders Map Collection
University of Alberta
Edmonton, Alberta

Review Guidelines

These guidelines have been created to aid the reviewer on questions of format and general policies for reviews.

Review Format: The review should be presented in three sections: 1) the bibliographic citation, 2) the review, 3) identification of the reviewer. Please submit your reviews via e-mail. Microsoft Word format as an attachment is preferred. You may also send your review on 3.5" floppy disks. Please note, if you send your review through floppy or e-mail, please also send via fax or mail, a backup paper copy for verification of content. Floppies will be returned upon request.

The bibliographic citation should include: Author's name, title, edition (if applicable), place of publication, publisher, date, number of pages, price, LC number (if known), and ISBN number (if known). An example, including correct punctuation is given below:

Reviews should be double-spaced and follow the usual principles of paragraphing. If reviewed material is compared with other works, please include author’s name, title, publisher and date of publication within the review itself rather than using footnotes. The review should be followed by your name as you wish to be cited, place of employment, including city and state.

Editorial Policies: The opinions and judgements appearing in WAML reviews are those of the author and do not reflect official sanction of WAML. The book review editor retains the right to make alterations in reviews submitted. If minor revisions do not alter the reviewer’s intent, they will be made without further communication. However, if the review editor feels that extensive revisions are needed, or if changes would result in altering the reviewer’s intent, such editing would only be made with the knowledge and agreement of the reviewer.

Review Content: To a certain extent the contents of a work must be described, however the reviewer should avoid making the review a list of the work’s contents. Rather the review should emphasize analysis, evaluation and comparative criticism. Questions, which should be considered in the review process, include: What is the purpose of the work? Has the content as described by the title been fulfilled? Has the author’s intent as described in the work’s preface and/or introductory remarks been realized in its content? How much of the work’s content is cartographic, or is it primarily written text illustrated by a few maps? How important is this work for research in geography and cartography? Should it be included in library collections, and what kind? The length of your review should be determined by the importance of the item being reviewed.

Reviews of books received by individual libraries that might be of interest to a wider audience are also invited, so long as they follow the review guidelines. Submit reviews to the Review Editor.

Thank you for your attention to these guidelines. Additional reviewers are always welcome. Please feel free to recommend other qualified reviewers who might be interested in submitting reviews to the *Information Bulletin*.

Katherine L. Rankin
Review Editor
WAML *Information Bulletin*
Catalog Department
University Libraries
University of Nevada, Las Vegas
4505 Maryland Parkway
Box 457034
Las Vegas, Nevada 89154-7034
Tel: (702) 895-2224
Fax: (702) 895-2280
E-mail: krankin@ccmail.nevada.edu

New Publications

New Mapping of Western North America

compiled by

Ken Rockwell
University of Utah Library Catalog Department

Notice of newly-published maps and cartographic products are welcome, so they can be announced even before they appear in my default source, namely OCLC. However, I’d like to clarify the scope of the list. Given all the map products available, I have to place some limits on myself and the list, so I’ve routinely excluded the following: city street maps, simply because of their great quantity, regularly-updated, virtually annual editions of various maps, such as US National Park maps, AAA state and California region maps, state highway dept. road maps, Thomas Bros. Street atlases, NIMA/NOAA nautical charts, and USGS topos.

Thus, I concentrate on thematic maps (including cities, such as an earthquake map for San Francisco), and new maps of states and regions by commercial publishers. Examples are geologic maps covering a USGS quadrangle, a state road map from a foreign publisher, and recreation maps. So let me know when you become aware of a new map, being aware, though, that I may already have had it on a previous list and will try to screen those out. — Ken Rockwell, Editor, New Mapping of Western North America.

ALASKA

Address: Alaska Division of Geological & Geophysical Surveys, 794 University Ave., Suite 200, Fairbanks, AK 99709-3645 URL: http://www.dggs.dnr.state.ak.us/.
ALBERTA

ARIZONA

Note: The images by Dohrenwend (plus others listed below) seem to have become available only recently. The latest address I've been able to find for Dohrenwend is: 223 S. State St., Teasdale, UT 84773-0141. Ph: (435) 425-3118. E-mail: dohrenwend@rkymtnhi.com.

BRITISH COLUMBIA

CALIFORNIA

Phil Hoehn informs us of a new series of image maps from the Small Blue Planet Company (URL: http://www.nowwhat.com/newproducts.html): iiCityAerial photo image maps, on CD-ROM. Already released: iiCity Greater Los Angeles: The Aerial
Photo Image Map of Greater Los Angeles. It is described as “Up-to-date street maps with the most detailed 1996 natural color aerals for Los Angeles and Orange County. Look up an address, print aerial image maps in color or greyscale, add your own digital pictures and annotations on the maps and explore Los Angeles with our picture-enhanced database of thousands of points of interest.” San Francisco and the Bay Area are coming soon.

Thomas Dibblee Geological Foundation Maps contributed by Phil Hoehn:
- Santa Cruz Island (DF-77, DF-78)
- Juniper Hills (DF-79)
- Valverdo (DF-80)
- Mescal Creek (DF-81)
- Lake Hughes/De Sur (DF-82)
- Burnt Creek (DF-83)

Contact: Dibblee Geological Foundation, Sales Contractor, Mr. E.R. Jim Blakley, 958 Isleta Avenue, Santa Barbara CA 93109, Phone or Fax (805)962-9730 http://dibblee.geol.ucsb.edu/.

We also note that Western Economic Research has released new (2001) maps for various parts of California on themes such as median home values, ethnic populations, Zip code areas, etc. Maps include San Diego and the Los Angeles 5-county region.

COLORADO

HAWAII

IDAHO

To order Idaho Geological Survey maps and publications see their website at: http://www.idahogeology.org/Products/default.htm.

Idaho Dept. of Water Resources has produced a set of Landsat images covering the state on CD-ROM. Data was purchased from EROS Data Center; EarthSat Corporation produced orthocorrected, ERDAS 8.x, IDTM projected images. University of Idaho has input OCLC records for each disk. Address: Idaho Dept. of Water Resources: 1301 North Orchard St., Boise, Idaho 83706; (208) 327-7900 Fax: (208) 327-7866

MONTANA

NEVADA

Order online at: http://www.nbmeg.unr.edu/sales.htm or by contacting Charlotte Stock, Publication Sales Mail Stop 178, Nevada Bureau of Mines & Geology, Univ. of Nevada, Reno, NV 89557-0088, Ph (775) 784-6691 x2, FAX (775) 784-1709, nbmgsales@unr.edu.

NEW MEXICO

OREGON

* Contributed by Klaus K. Neuendorf, Editor/ Librarian at Oregon's Dept. of Geology and Mineral Industries (klaus.neuendorf@dogami.state.or.us). To order, contact James Roddey at 800 NE Oregon St., #28, Portland, OR 97232, (503) 731-4100, ext. 242 (james.roddey@state.or.us). To purchase or for “Store-Maps and Reports” on the Nature of the Northwest web page (http://www.naturenw.org); search for “O-01”.

PACIFIC NORTHWEST

UTAH

Ordering information for Utah Geological Survey publications and maps is available on their web site: http://www.maps.state.ut.us/geomaps.htm#order

WASHINGTON STATE

Ordering information for the Washington Division of Geology and Earth Resources is available on their web site: http://www.wa.gov/dnr/htdocs/ger/getpubs.htm.

WESTERN UNITED STATES

WYOMING

Ordering information for Wyoming State Geological Survey maps and publications is available by phone: (307) 766-2286, e-mail: sales@wsgs.uwyo.edu or on the web at: http://www.wsgsweb.uwyo.edu.
News of Note

compiled by
Linda Zellmer and Adonna Fleming

Benchmarks

David Rumsey Collection Receives “Webby” Award

The David Rumsey Historical Map Collection has received the best technical achievement Web site in the 2002 Webby Awards (URL: http://www.webbywards.com) the leading international honor for Web sites.

The David Rumsey Historical Map Collection, one of the largest private map collections in the United States, numbers more than 150,000 maps and includes rare 18th and 19th century North and South American atlases, charts, globes, wall maps and related items. The online collection, http://www.davidrumsey.com, currently contains more than 6,500 high-resolution digital images, including a series of maps published in 1814 documenting Lewis and Clark’s trek across America.

Using Luna Imaging’s Insight software, Web viewers experience this unique collection of historical maps in a revolutionary way. Complete cataloging data accompanies every image, allowing for in-depth searches of the collection. Using Insight, multiple maps from different time periods can be viewed side-by-side. Or, users can create their own collection of maps by saving groups of images online that hold particular interest.

In addition, Luna Imaging’s Insight Java Client can be downloaded from The David Rumsey Historical Map Collection Web site. It has been designed for those desiring advanced software functionality.

Hailed by The Wall Street Journal as a celebration of “sites that pave important paths to the Internet’s next phase,” the Webby Awards are determined by the International Academy of Digital Arts & Sciences, a diverse, 350-person organization whose membership includes film director Francis Ford Coppola, musicians David Bowie and Beck, cyberguru Esther Dyson, CEO of Real Networks Rob Glaser, Chef Julia Child, and Electronic Frontier Foundation Founder John Perry Barlow.

“The Webby Awards showcase the best of what the Internet has to offer in terms of innovation, creativity and originality,” says Maya Draisin, executive director of the International Academy of Digital Arts & Sciences. “The David Rumsey Historical Map Collection’s nomination for a Webby Award is a testament to its great contributions in pushing the Internet envelope.”

David Rumsey Receives G&M Honors Award

The Special Libraries Association, Geography & Map Division presented David Rumsey with the Division’s Honors Award for his outstanding contribution to the fields of geography, cartography and map librarianship. Via the David Rumsey Collection (http://www.davidrumsey.com), map users around the world now share access to a unique private collection of early maps and atlases. The G&M Division honors David Rumsey for his innovative experimentation with historical map images and modern geospatial data; for his support and development of map image publishing software; and for his dedication to the precise bibliographic control of individual map images. David Rumsey truly shares the spirit and commitment of map librarians in making cartographic information widely accessible. David accepted the award June 10, 2002 at the Special Libraries Association conference in Los Angeles. Contributed by Jim Gillispie, jeg@jhu.edu.
Donna Koepp Moves to Harvard

Donna Koepp is the new Head of Government Documents and Microforms and Head of Reference and Instruction for the Social Science Program at Harvard University. Donna moves to Harvard after spending most of her life in the West. She has held positions at the University of Kansas as the head of their Map Library and GeoMedia Services, where she previously served as head of Government Documents and Maps. She was previously at Denver Public Library. Donna’s new e-mail address is koepp@fas.harvard.edu.

Jon Carlson Awarded Helen Wallis Fellowship

The fourth Helen Wallis Fellow, Jon Carlson, a doctoral candidate in the Department of Political Science at Arizona State University, took up residence in the British Library’s Map Library on May 22, 2002 for three months.

The fellowship, named after the former Map Librarian, the late Dr. Helen Wallis, ‘confers recognition by the Library on a scholar whose work will help promote the extended and complementary use of the British Library’s book and cartographic collections in historical investigation’. The Wallis Fellow has similar privileges to those accorded the Centre for the Book Fellows (with an additional £300 to spend on BL services).

Jon Carlson will be researching the process by which the modern European global system expanded to include new regions, and the underlying economic, political and cultural processes that accompanied this expansion with particular reference to Native Americans of the Vancouver Island region, the Asanti of West Africa, the kingdom of Abyssinia and Japan.

For further information please contact maria.chang@bl.uk. The closing date for each annual award will be 1 May.

Katie Frohembür Retires from UC-Berkeley

Katie Frohembür, Head of the Earth Sciences/Maps Library at the University of California-Berkeley, retired from UC Berkeley at the end of June. Katie was a science librarian for 28 years, beginning her career at UCB in 1989. She was first the Information Systems Manager of the Earthquake Engineering Research Center, an Affiliated Library. From 1997-1999, Katie served as AUL for the Sciences, and became the Head of the Earth Sciences/Maps Library in December 1999, as it moved into its new space in McCone Hall. Katie has been active in UC and regional earth science, geology and map groups as well as participating in many campus initiatives such as the Electronic Cultural Atlas Initiative (ECAI).

Barbara Haner Retires

Barbara Haner, long time WAML member, retired from UCLA in April. She plans to divide her time between the US and England where she will live in Herefordshire.

Hillery Oberle Appointed ASU Map Archivist

Hillery Oberle recently accepted a three year appointment as Map Archivist in charge of the Map Collection at Arizona State University. Hillery holds the M.A. in Geography from the University of Missouri and worked as a Library Specialist Senior in the ASU Map Collection since 1999.

Canadian News

Canadian Map Libraries to Receive NRC Digital Data

In February 2002, a long awaited agreement was reached which offers much improved access to Canadian digital spatial data. This agreement will allow researchers to obtain:

- Canadian National Topographic Data Base (NTDB) maps at scales of 1:250,000 and 1:50,000
- Digital Elevation Data at the same scales
- Geological Survey of Canada “A” series maps in paper and digital formats
- GSC Open Files in digital format
- Some digital administrative boundaries and road network files.

Previously, access to these types of digital information was prohibitively expensive for educational users. The recently signed agreement between the Depository Services Program (DSP) and Natural Resources Canada is the result of long years of lobbying by the Association of Canadian Map Libraries and Archives (ACMLA) and the Canadian Association of Research Libraries (CARL). In effect, the DSP will now include these digital topographic maps as federal government deposit material for those libraries who are already responsible for full depository collections of paper topographic maps. The cost saving for libraries under this agreement is in the order of $400-600 per digital map. And as there are more than 17,000 maps in the National Topographic 1:50,000 series alone, the cost prior to this agreement prevented libraries from providing access to more than a token few sheets. Now researchers can obtain access to detailed geographic
Cataloging News

New Geographic Area Codes

With the completion of LC’s upgrade of its integrated library system to Voyager 2000, several new geographic area codes (GACs) are now available for use in the 043 field. These codes will appear in a new edition of the MARC Code List for Geographic Areas, scheduled for publication later this year. Catalogers may begin to assign these new codes immediately.

New Codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>Earth</td>
</tr>
<tr>
<td>zd</td>
<td>Deep Space</td>
</tr>
<tr>
<td>zmo</td>
<td>Moon</td>
</tr>
<tr>
<td>zju</td>
<td>Jupiter</td>
</tr>
<tr>
<td>zma</td>
<td>Mars</td>
</tr>
<tr>
<td>zme</td>
<td>Mercury</td>
</tr>
<tr>
<td>zne</td>
<td>Neptune</td>
</tr>
<tr>
<td>zo</td>
<td>Outer Space</td>
</tr>
<tr>
<td>zpl</td>
<td>Pluto</td>
</tr>
<tr>
<td>zs</td>
<td>Solar System</td>
</tr>
<tr>
<td>zsa</td>
<td>Saturn</td>
</tr>
<tr>
<td>zsu</td>
<td>Sun</td>
</tr>
<tr>
<td>zur</td>
<td>Uranus</td>
</tr>
<tr>
<td>zve</td>
<td>Venus</td>
</tr>
<tr>
<td>dd</td>
<td>Developed Countries</td>
</tr>
<tr>
<td>u-at-ac</td>
<td>Australian Capital Territory</td>
</tr>
<tr>
<td>a-at-ne</td>
<td>previously coded as a-at-ne</td>
</tr>
<tr>
<td></td>
<td>(New South Wales)</td>
</tr>
</tbody>
</table>

Usage Notes

The GAC for Earth (x) is assigned only if the subject heading Earth by itself or with subdivisions (Earth - Crust; Earth -Density; Earth - Mantle) is assigned. It is not used for topics (like Meteorology, Geology) which are Earth-centric but in which the location of the Earth is taken for granted.

Outer space (zo) encompasses all planets, phenomena, suns, moons, solar systems, etc. outside the Earth’s atmosphere. Solar system (zs) covers all the planets within our solar system (inner and outer planets), phenomena occurring within the solar system (e.g. comets), the sun, and moons located within our solar system. Deep space (zd) refers to all planets, phenomena, suns, and moons in solar systems other than our own.

ALA/LC Romanization Tables on the Web

The scanned text of the 1997 edition of the ALA-LC Romanization Tables is now available as PDF files on the CPSO Web site at http://lcweb.loc.gov/catdir/cpsso/roman.html. There are links to the tables under “The Latest News from CPSO” and under “Cataloging Tools and Documentation.”

MARC Country and Geographic Area Codes for Aruba, Bonaire and East Timor

As the result of East Timor’s recent independence from Indonesia (May 2002), new country and geographic area codes are being defined for use in MARC records. The new codes for East Timor are em (Country code) and a-em (Geographic area code).

The Netherlands Antilles is an internally self-governing and integral part of the Netherlands. It consists of the islands of Bonaire, Curacao, Saba, Saint Eustatius and the southern half of the island of Saint Martin. Aruba was part of the Netherlands Antilles until it seceded in 1986 to become a separate, autonomous member of the Kingdom of the Netherlands. Therefore, a new geographic area code is being defined for Aruba. Moreover, because all of the separate islands of the Netherlands Antilles have their geographic area codes, a geographic

Canadian Libraries Partner with DMTI Spatial

An existing, partnership program, unrelated to the NRC partnership, which is being offered by DMTI Spatial, a private firm, is continuing. For a nominal subscription fee, 40 Canadian academic libraries receive SMART (Spatial Mapping Academic Research Tools) datasets, including street maps, postal files and Census of Canada boundary files. These 2 programs, along with emerging arrangements for map libraries with several provincial government mapping agencies, are helping to address the issues of access and cost of Canadian geospatial data for academic libraries. Contributed by Tim Ross, timross@interchange.ubc.ca.

National Atlas of Canada Revised

The online version of the Atlas of Canada (http://www.atlas.gc.ca) had a major redesign in June 2002. New features include a gazetteer and an improved interactive mapping tool. Contributed by Tim Ross, timross@interchange.ubc.ca.
area code is being defined for Bonaire for use in MARC records. The new code for Aruba is \textit{nwaw} (Geographic area code). The new code for Bonaire is \textit{nwbh} (Geographic area code). Subscribers to LC publications can anticipate receiving MARC records reflecting these changes in all distribution services not earlier than September 3, 2002. Questions regarding the country and geographic area codes should be directed to Cataloging Policy and Support Office, Library of Congress, Washington, DC 20540-4305, (202) 707-4380, Email: csps0@loc.gov.

Updated California Geographic Cutters

California regional and city geographic cutter numbers (G4362 and G4364) have been updated by Traci Penrod of the Earth Sciences and Map Library and the University of California, Berkeley. These lists are on the web at \url{http://library.berkeley.edu/EART/CAregion-cutters.html} (Region Cutters) and \url{http://www.lib.berkeley.edu/EART/a-k.html} (City Cutters). Contributed by Phil Hoehn, philhoehn@juno.com.

Conferences and Classes

Western Association of Map Libraries. Fall, 2003 Meeting. Santa Cruz, California. Host: Cynthia Jahns.

Western Association of Map Libraries. Spring, 2004 Meeting. To be Arranged.

Maps & Society Programme, 2002-3. University of London, Warburg Institute, Woburn Square, London at 5:00 PM on a Thursday. See \url{http://www.ihrinfo.ac.uk/maps/warburgprog.html} or contact Tony Campbell (t.campbell@ockendon.clara.co.uk) for schedule.

International Map Trade Association (IMTA) Americas Region. Conference & Trade Show. Minneapolis, MN. September 9-11, 2002. URL: \url{http://www.maptrade.org/}

Groupe des Cartothecaires de LIBER (European Mapcurator's Group), Helsinki University Library, Finland. September 3-6, 2002. URL: \url{http://www.kb.nl/infolev/liber/intro.htm} or \url{http://www.kb.nl/infolev/liber/13th.htm}.

Urban Data Management Society (UDMS). Prague, Czech Republic October 2 - 4, 2002. URL: \url{http://www.udms.net/default.html}.

Association of Pacific Coast Geographers, San Bernardino, CA. October 2-6, 2002. URL: \url{http://csbs.csusb.edu/apcg/}.

North American Cartographic Information Society (NACIS), Columbus, Ohio, October 9-12, 2002. For more information see: \url{http://www.nacis.org/columbus/nacis02.jpg}.

Australian Map Circle. Macquarie University, Sydney, Australia. February 2-5, 2003. URL: \url{http://australianmapcircle.org.au/}.

Digital Data

GAO Report on Electronic Records

The Government Accounting Office (GAO) has issued a report on the challenges faced by the National Archives (NARA) in preserving electronic records. Information Management Challenges in Managing and Preserving Electronic Records (GAO-02-586, June 2002) finds that across the board, federal agency compliance with electronic records laws and regulations is problematic. There is a systemic failure to inventory systems and schedule records resulting in an increased risk of premature deletion. In addition, “most electronic records (including databases of major federal information systems) remain unscheduled, and records of historical value are not being identified and provided to NARA for preservation in archives. As a result, valuable electronic records may be at risk of loss.” The report also states that NARA guidance to agencies “does not address many common products of electronic information processing, particularly those that result from the now prevalent distributed, end-user computing environment.” The report is available at http://www.gao.gov/new.items/d02586.pdf. A summary of the study appeared in an article by William Mathews in Federal Computer Week (June 19, 2002). It is available at http://www.fcw.com/fcw/articles/2002/0617/web-nara-06-19-02.asp. Contributed by Connie Manson, connie.manson@wadnr.gov.

Standard for a United States National Grid Endorsed

The objective of this standard is to create a more favorable environment
for developing location-based services within the United States and to increase the interoperability of location services appliances with printed map products by establishing a nationally consistent grid reference system as the preferred grid for National Spatial Data Infrastructure (NSDI) applications. This standard defines the U.S. National Grid. The U.S. National Grid is based on universally defined coordinate and grid systems and can, therefore, be easily extended for use world-wide as a universal grid reference system.

The standard defines a preferred U.S. National Grid (USNG) for mapping applications at scales of approximately 1:1,000,000 and larger. It defines how to present Universal Transverse Mercator (UTM) coordinates at various levels of precision. It specifies the use of those coordinates with the grid system defined by the Military Grid Reference System (MGRS). Additionally, it addresses specific presentation issues such as grid spacing. The UTM coordinate representation, the MGRS grid, and the specific grid presentation requirements together define the USNG. This standard is a process standard as defined by the Federal Geographic Data Committee (FGDC) Standards Reference Model. Specifically, it is a presentation process standard. For more information see: http://www.fgdc.gov/standards/documents/standards/xy_proj/fgde_std_011_2001_usng.pdf.

National Grid Conversion Software Added to Geodetic Toolkit

The national grid will improve public safety, commerce, and aid the casual GPS user with an easy to use geocoder system for identifying and determining location with the help of a USNG gridded map and/or a USNG enabled GPS system. Geodetic Toolkit (http://www.ngs.noaa.gov/TOOLS/) is a collection of programs available on the National Geodetic Survey software download site (http://www.ngs.noaa.gov/PC_PROD/pc_prod.shtml). A wide variety of programs are available on the site. Of particular interest are:

- **GPPCGP** - which converts NAD 27 State plane coordinates to NAD 27 geographic positions (latitudes and longitudes) and conversely. It includes defining constants for all NAD 27 plane coordinate zones.
- **SPCS83** - Converts NAD 83 state plane coordinates to NAD 83 geographic positions and conversely. It includes defining constants for NAD 83 coordinate zones. State plane coordinates are entered or computed to 1 mm accuracy, while the latitudes and longitudes entered or computed correspond to approximately 0.3 mm accuracy.

U.S. National Grid Conversion - Converts between USNG, UTM, and geodetic latitude/longitude. The U.S. National Grid (USNG) System is an alphanumeric reference system that overlays the UTM coordinate system. It is a Federal Geographic Data Committee (FGDC) standard developed to improve public safety, commerce, as well as aid the casual GPS user. The USNG provides an easy to use geocoder system for identifying and determining locations with the help of a USNG gridded map and/or a USNG enabled GPS system. PC software is available for download.

Universal Transverse Mercator Coordinates - The Universal Transverse Mercator Coordinate (UTM) system provides coordinates on a worldwide flat grid for easy computation. It divides the World into 60 zones, each 6 degrees longitude wide, extending from 80 degrees south latitude to 84 degrees north latitude. Polar regions are excluded. The utilities in this package provide methods for converting between Geodetic Positions and UTM.

NGS software is offered free over the internet for users who are submitting data for inclusion in the NGS database, or those who have need of utilities to manipulate or perform computations on geodetic data.

Standards Development and Call for Participation

Members of the geospatial information community were invited to participate in the development of data content standards and models for National Spatial Data Infrastructure (NSDI) Framework data. Comments were due by July 29, 2002. The standards are being developed as part of the President’s Geospatial One-Stop, a White House initiative to spatially enable the delivery of government services and to improve access and use of geospatial information.

Scott Cameron, Managing Partner for the Geospatial One-Stop Project sent out a Notice of Standards Development and Call for Participation inviting members of the geospatial information community to participate in developing NSDI Framework standards. They are beginning to develop Framework data content standards and models as part of the Geospatial One Stop E-Government Initiative, a project that is part of the President’s Management Agenda. Geospatial One Stop gives us the opportunity of accelerating the completion of Framework standards as part of an American National Standards Institute accredited process. The approved standards will become national in scope and applicability.

The call was directed at all organizations, which collect or use geospatial data in any of the Framework themes.
It provides an opportunity to participate in the standards process and to help ensure that the standards and models developed meet communities needs. Theme leads for each of the defined Framework themes will be convening teams in the coming weeks. Contributed by John Mocller, FGDC Staff Director.

Spatial Data from Bureau of Transportation Statistics

Geospatial data sets distributed by the Bureau of Transportation Statistics depict transportation facilities, networks, and services. Databases are designed to be used with Geographic Information System (GIS) software to locate transportation features and provide a framework for transportation network analysis.

2001 NTAD - The National Transportation Atlas Data (NTAD) (http://www.bts.gov/gis/ntatlas/ntatlas.html) is a set of transportation-related geospatial data for the United States. Data consists of transportation networks, facilities, and other spatial data used as geographic reference.

1998 NORTAD - The North American Transportation Atlas Data (NORTAD) (http://www.bts.gov/gis/natlas/natlas.html) is a set of transportation-related spatial data for North America. The successful completion of this project would have been impossible without participation of the governments of Canada and Mexico. ADC WorldMapTM, the Desktop Mapping Division of ADC, also provided data needed to complete the project. This data is copyrighted and can only be distributed in print, not digital.

The government supplied data is the most recent version available. ADC WorldMapTM data originated from version 1.1. BTS data can be requested on CD-ROM from: http://products.bts.gov/btsproducts.. Data is free. Also available on the Bureau of Transportation Statistics website is the BTS Data Converter (http://www.bts.gov/gis/ntatlas/viewer.html), which can be used to convert NTAD/NORTAD into several GIS formats. Translation software developed by both BTS and customers/vendors is also available on the BTS website at http://www.bts.gov/gis/ntatlas/translation.html.

Coastal Map and Vector Shoreline Data

The purpose of the Charted Vector Shoreline Project is to provide public access to accurate and current coastline and shoreline data. The project targets scales between 1:10,000 and 1:80,000 with emphasis on larger scales. Using processes and software designed by the Cartographic and Geospatial Technology Programs (CGTP), the vector data is extracted from NOAA Nautical Charts.

From each chart both Mean High and Mean Low Water lines are extracted as polygons from the binary raster files used in nautical chart production. The resulting polygons are checked for accuracy and converted from paper-charted units to geographic positions and imported to the shapefile format used in GIS applications. The Mean High Water Line is represented by files with gd20 in the name, and Mean Low Water Lines by files with mar in the name (For example 1276mar.shp and 1276gd20.shp). Federal Geographic Data Committee (FGDC) compliant metadata is also available. Additional files will be added as completed.

The Coastal Map Data Layer for GIS Systems project, designed to create an up-to-date, digital, and georeferenced coastal map data layer, began as a way to provide the coastal stewardship community and general public with non-proprietary navigational chart images to be used as backdrops for Geographic Information Systems (GIS) derived products. Coastal maps are produced from NOS nautical charts for all near-shore geographic areas of the United States.

The nautical chart contains information critical to navigational users, but which obstructs a clear view of the basic topographic and hydrographic data. The charts are therefore cleaned of all navigational aids and symbols, prepared as TIFF images and georeferenced. Federal Geographic Data Committee (FGDC) compliant metadata is also available. Additional files will be added as completed. Data can be downloaded from: http://historicals.ncei.noaa.gov/cm_vs_query.asp.

Scanned Flood Maps and Studies Available Online

Digital versions of NFIP maps and studies can now be viewed and ordered online. Viewing for all available scanned images is available free of charge. Currently, users can view the images by clicking the View icon and link when the results from a Catalog or Quick Order Search are displayed.

Customers can also purchase digital versions of these products. Either CD-ROM or online delivery can be specified. If online digital products are purchased, customers can retrieve their order through the MSC Digital Post Office.

The FEMA-issued flood maps, Flood Insurance Rate Maps (FIRMs) and Flood Hazard Boundary Maps (FHBMs), have been scanned as TIFF files. These products are offered for
free viewing online. The scanned maps are available for purchase at the individual, community, county and state kit levels.

An image viewer, called Flood Map Image Tool (F-MIT) Basic version 1.0, is also packaged with the scanned maps on CD-ROM. It allows customers to view, zoom in and pan the image. In addition, F-MIT allows users to create a "FIRMette" - a section of the map at 100% scale that can be printed on standard paper sizes - letter (8 1/2" x 11"), legal (8 1/2" x 14") and tabloid (11" x 17"). The F-MIT Basic image viewer can be downloaded directly from the website at no cost. Sample scans are also available. An enhanced product, F-MIT Pro, will soon be available for purchase and will allow more extensive lookups and retrievals of scanned images.

Flood Insurance Studies have been scanned as Adobe Acrobat PDF files. Associated floodways maps, if applicable, have been scanned as TIFF files. These products are offered for online viewing and download, through community, county and state kits. Alternatively, customers are able to order a CD-ROM containing the images at the community and county kit level. Adobe Acrobat Reader is needed to view the PDF files.

ArcGIS 8.2 is Shipping

ArcGIS 8.2 is now available in the United States and Canada. ArcGIS 8.2 includes two new extensions: ArcGIS Publisher for publishing and sharing electronic maps and ArcGIS Street-Map Europe, a high-quality road base for Europe that supports mapping and geocoding. ArcGIS 8.2 Desktop applications include many improvements and enhancements such as support for the ISO Metadata Standard, improved labeling and annotation, and updated ESRI Data & Maps CDs with Census 2000 data.

ArcGIS Publisher is an extension to ArcView, ArcEditor, and ArcInfo that converts map documents (MXD) to published map files (PMF), which can be viewed with ArcReader, a free program that can be downloaded from ESRI. ArcGIS Publisher allows GIS users and data suppliers to easily publish and share electronic maps locally, over networks, or via the Internet.

ArcGIS StreetMap Europe is offered in two different data options: general roads or detailed streets. The general roads option is a single data set that covers Austria, Belgium, Denmark, France, Germany, Italy, Luxembourg, Netherlands, Spain, Sweden, Switzerland, Portugal, and the United Kingdom. The detailed street option is available separately for each individual country or as a package that includes the data for all the listed countries.

FEMA Q3 Flood Data
Available on Geography Network

Redlands, CA. ESRI has announced that Federal Emergency Management Agency (FEMA) flood data has been added to the Geography Network’s extensive collection of georeferenced data. The Geography Network (http://www.geographynetwork.com) is a framework for building and launching a commercial data distribution mechanism over the Internet.

Geography Network users can now download FEMA Q3 Flood Data to use with GIS software such as ArcGIS and ArcExplorer—Java Edition. Using GIS software, users can overlay the Q3 Flood Data with their own information (street networks, land parcels, customer addresses, etc.) to display potential flood risk zones and identify future marketing opportunities. Q3 Flood Data is available for 1,293 U.S. counties, 76 percent of U.S. households. The digital Q3 Flood Data contains the following vectorized (lines and areas) data features:

- 100-year and 500-year floodplain boundaries (including velocity zones)
- Flood insurance zone designations
- Floodway boundaries (when available)
- Political boundaries (state, county, and community)
- Community and map panel identification numbers
- Flood Insurance Rate Map Panel neatlines
- U.S. Geological Survey 7.5-minute (1:24,000 scale) topographic map quadrangle neatlines

FEMA is an independent agency of the federal government, reporting to the President. Since it was founded in 1979, FEMA’s mission has been to reduce loss of life and property and protect the United States’ critical infrastructure from all types of hazards through a comprehensive, risk-based emergency management program of mitigation, preparedness, response, and recovery. FEMA often works in partnership with other organizations that are part of the nation’s emergency management system. FEMA and ESRI previously partnered to publish a hazard awareness Web site
National Geographic’s TOPO! extension for ArcGIS lets users import TOPO! state series basemap data directly into their ArcGIS project. The extension compiles the scanned map data and quickly imports a seamless map into ArcGIS that exactly matches the project coverage area. During this process, the base map is copied to a hard drive and conveniently stored as a single layer or theme. The extension supports a broad range of projections and is compatible with ArcGIS 8.1 and ArcView 3.x. To purchase National Geographic map products, log on to http://www.nationalgeographic.com/maps or call 800-962-1643. More information about TOPO! or TOPO! Image Support is available on the web at http://www.nationalgeographic.com/topo or by calling 415-558-8700.

Global Climate 2001 Database Now Available

EarthInfo’s Global Climate database is one of the most extensive collections of global weather data available on CD. This database has proven to be a valuable resource for universities, libraries and research facilities worldwide. Global Climate contains period-of-record temperature and precipitation data from over 27,000 stations, some dating back to the 1600’s. EarthInfo’s access software is provided along with the CD for quick and easy data retrieval. For more information contact, Scott Armstrong, EarthInfo, http://www.earthinfo.com or call 303-938-1788.

Viewing GeoTIFFs

ArcExplorer software, which can be downloaded free from ESRI, can be used to view GeoTIFFs. It is available at: http://www.esri.com/software/arceexplorer/. Another program that can be used to view TIFF files is DLGV32, a freeware viewer distributed by USGS for digital line graph files, digital raster graphics, including large TIFF files, and more. It can be downloaded from: http://mcmcweb.er.usgs.gov/drc/dlgv32pro/. Contributed by Joseph Kerski, jjkerski@usgs.gov.

California Spatial Information Library (CaSiL) Data Index

Data concerning resource administration, politics and government, water, infrastructure, and cultural and physical geography can be viewed and downloaded from the California Spatial Information Library. Sample images produced with data from the library can be viewed from this page. All data is in an Albers projection to enable overlay and integration. Data is organized by county, quad area, or statewide units. The site is at http://www.gis.ca.gov/data_index.epi. DRGs and SPOT data for use by State agencies and educational institutions is also available at the site.

New USGS Digital Data Series

The US Geological Survey recently released several new publications as part of their Digital Data Series. They include:

General News

Dibblee Geological Foundation Merges with Santa Barbara Museum of Natural History

The Thomas W. Dibblee, Jr. Geological Foundation and the Santa Barbara Museum of Natural History have announced plans for a merger that would bring the lifelong work of legendary field geologist, Tom Dibblee, to fruition and ultimately create an endowed center for geology at the Museum.

Mr. Dibblee, age 90, who still occasionally walks the Central Coast’s back country with students and fellow geologists, has devoted 75 years of his life to mapping California geology—criss-crossing one fourth of the state on foot.

“Most field geologists aspire to produce one map or a small section of a map in their career,” said John Powell, President of the Dibblee Geological Foundation. “Mr. Dibblee has mapped more than 500 quadrangles of California geology. “He is a living legend for good reason,” he said. “The Dibblee Geological Foundation has published 110 of those quadrangles over the last 18 years. We intend to publish the remainder over the next several years in partnership with the Museum.” Mr. Dibblee is a descendant of Jose de la Guerra, pioneer settler of Santa Barbara, and Ebenezer Dibblee, an immigrant to California from Massachusetts in the 19th century. He grew up on the historic San Julian Ranch located near Lompoc, California. Among his many achievements, in 1948 he discovered the important Cuyama oil field in the Transverse Ranges of California while working for the Richfield Oil Corporation. In recognition of his work, Richfield named the main oil-producing horizon the “Dibblee Sand”.

The merger, announced by Mr. Powell and Museum Executive Director Dr. Karl Hutterer, will result in the establishment of the Thomas W. Dibblee Jr. Center for Earth Sciences, and will be endowed by Mr. Dibblee and other supporters of geology. The Center will initially focus upon field geology and the publication of the Dibblee geologic maps. It will eventually encompass a broad range of geological activities and services. The Dibblee Center will house the archive of Mr. Dibblee’s original field sheets, geologic field records, as well as his collections of minerals, fossils, and marbles.

The Museum expects to begin operation of the Dibblee Center, and to take over production and distribution of the Dibblee geologic maps, beginning in early 2003.

ESRI and Civic Technologies Debut GIS Tool for Libraries

Redlands, CA—A new Internet application will enable library directors and their staff to offer services that are tailored to their communities’ needs with the help of ESRI’s GIS technology. LibraryDecision is a cost-effective planning tool to help library administrators plan and allocate resources, initiate demand-responsive services, and anticipate future service requirements. ESRI, the world leader in geographic information system solutions, and its business partner, Civic Technologies, Inc., of Los Angeles officially launched the comprehensive Internet-based GIS application during the American Library Association (ALA) annual conference June 13-19 in Atlanta, Georgia.

Powered by ESRI’s ArcGIS and ArcIMS, LibraryDecision is a knowledge management system which
enables library managers to analyze and interpret community needs and characteristics; determine library service areas, cardholder usage, and service levels; identify and select library sites; share information; demonstrate the need for funding and make competitive grant applications; and visually analyze data relationships. LibraryDecision combines a library’s own data with easy access to Census 2000 and other geographic and socioeconomic information to help library administrators deliver more effective public services and to quickly and accurately solve problems and address new initiatives.

Eight data modules are prepackaged with LibraryDecision and are supplemented with the library’s own data such as circulation, collections, facilities, and capacities. Library directors have access through an authenticated password from the Civic Technologies Web site or from a link on their own library Internet page.

LibraryDecision is a scalable solution for any library jurisdiction from one library to dozens of branches and brings the power of GIS analysis and visualization to subscribers via their Web browsers. The Civic Technologies solution uses a customized version of ESRI’s ArcGIS and ArcSDE to query a structured query language (SQL) database, and ArcIMS enables distribution of the data online. Clients can transfer data to the server either through online forms or directly in specific formats.

Civic Technologies offers customization of LibraryDecision to extend its analytical and interpretive capabilities. The firm has completed successful implementations of customized GIS applications at the County of Los Angeles Public Library and the A.K. Smiley Library in Redlands, California. Civic Technologies is also assisting the San Diego Public Library to prepare California Library Bond Act applications for matching grants and has been selected by the city of Glendale, California Public Library to prepare library service area assessment and a strategic plan.

GIS Day Coming Soon

GIS Day is a grassroots event that encourages geographic information systems (GIS) users and vendors to open their doors to schools, businesses, and the general public to showcase real-world applications of GIS technology. The event is principally sponsored by the National Geographic Society, the Association of American Geographers, University Consortium for Geographic Information Science, the United States Geological Survey, The Library of Congress, Sun Microsystems, and ESRI.

GIS Day is part of the National Geographic Society’s new initiative, Geography Action, a year-long initiative encompassing key educational achievements such as GIS Day and Geography Awareness Week. This year’s is America’s Backyard: Exploring Your Public Lands. In addition to events such as GIS Day and Geography Awareness Week, there will also be many worldwide activities supporting geography action, with their goal being to engage people in learning and caring about geography.

The National Geographic Society has sponsored Geography Awareness Week since 1987 to promote geographic literacy in schools, communities, and organizations. Geography Awareness Week will be held November 17-23, 2002. GIS Day 2002 will be held the Wednesday of Geography Awareness Week, November 20. In 2001, thousands of organizations hosted GIS Day events in countries all around the world.

Be sure to read about some of them on our Success Stories page. Through the combined efforts of GIS Day 2001 participants, millions of children and adults were educated on GIS technology through geography.

GIS users and vendors are invited to join the National Geographic Society, University Consortium for Geographic Information Science, Association of American Geographers, United States Geological Survey, Library of Congress, Sun Microsystems, and ESRI in opening their doors for GIS Day 2002, November 20.

David Rumsey and AMICO Sign Distribution Agreement

The Art Museum Image Consortium (AMICO) and Cartography Associates, owned by David Rumsey, have signed a distribution agreement to deliver The AMICO Library (TM) for higher education and scholarly use. Cartography Associates, a provider of online digital images of rare 18th and 19th century North and South American cartographic history materials, is the latest in a series of distributors, announced in recent months, making The AMICO Library available at reasonable rates with different functional and interface flexibility. Our objective is to make the AMICO Library widely available for a variety of user types, from small art institutes to large public library systems, K-12 schools to state universities, and to provide users with a choice of service providers so they may select one that particularly suits their unique needs.

For its presentation of The AMICO Library, Cartography Associates has chosen Luna Imaging’s Insight software as the delivery platform. The collection will be available for the Fall 2002 term to educators and scholars within institutions, as well as
for individual unaffiliated scholars, for an annual subscription rate. Luna Imaging will provide hosting and customer services for Cartography Associates.

The addition of The AMICO Library as the second collection of Cartography Associates supports the vision of David Rumsey to provide a broad range of cultural materials to both educators and scholars and the ability to integrate cultural materials from several disciplines in ways never before achieved for scholarly exploration at the highest level of quality possible using the Internet.

Cartography Associates presents historical maps and other culturally significant materials for research and education using the Internet. Cartography Associates was founded by map collector David Rumsey in 1996 to provide online distribution of digital images from his private collection of rare 18th and 19th century North and South American maps. The David Rumsey Map Collection, one of the largest private map collections in the United States, contains over 150,000 maps and includes rare atlases, charts, globes, wall maps and related items. The online collection, now numbering over 6,500 maps, is a growing cross section of the physical collection and is highly regarded by researchers and the public alike, as evidenced by the thousands of visitors each day to http://www.davidrumsey.com.

Rumsey’s site has been featured in Wired Magazine, USA Today, and TechTV and has received numerous Web awards, including Yahoo Pick of the Week, and Best of the Net from About.com. For more information regarding the availability of The AMICO Library from Cartography Associates, contact Jennifer Zabriskie at 310 274 8787, ext. 121.

About AMICO

The Art Museum Image Consortium (AMICO) is a growing, independent non-profit (501c3) corporation. Founded in 1997, the Consortium today is made up of over 35 major museums in the United States, Canada, and the United Kingdom. It’s an innovative collaboration - not seen before in museums - that shares, shapes, and standardizes digital information regarding museum collections and enables its educational use. Membership is open to any institution with a collection of art.

Together AMICO Members build The AMICO Library™, a multimedia documentation of works in their collections. The 2002 edition of The AMICO Library documents approximately 100,000 different works of art, from prehistoric goddess figures to contemporary installations; new works are added annually. More than simply an image database, AMICO Library works are fully documented and may include curatorial text, detailed provenance information, multiple views, and other related multimedia. Subscribers find The AMICO Library valuable because it combines the immediacy and accessibility of the Web with the persistence and academic weight of traditional library reference sources.

The AMICO Library is accessible over secure networks to licensed subscribers such as universities, colleges, libraries, schools, and museums. Over 3 million users on four continents include faculty, students, teachers, staff, researchers, and public library patrons. Educational subscribers receive access to The AMICO Library through one of our Distributors. A subscription to The AMICO Library provides rights to use works for a broad range of educational purposes. Potential subscribers may preview a Thumbnail Catalog of The AMICO Library, request a free trial from our Distributors, and get further information at http://www.amico.org. Contributed by Jennifer Trant, info@amico.org.

Internet Resources

California Diversity Data

The California Natural Diversity Database (CNDDB) is a continually refined and updated computerized inventory of location and condition information on California’s rarest plants, animals, and natural communities. It is a member of NatureServe (http://www.natureserve.org).

CNDDB data are organized geographically and taxonomically. Information can be retrieved by taxa or by United States Geological Survey (USGS) map sheet (1:24,000, 1:62,500, 1:100,000 or 1:250,000 scale). Most CNDDB clients request information by USGS 7.5’ quad (1:24,000 scale). The 7.5’ quad is the smallest area for which we will perform a data retrieval.

Information from the CNDDB is available in three formats: text reports, overlays (http://www.dfg.ca.gov/whdab/html/reports_overlays.html#extrep), and a subscription to the PC database application called RareFind 2 (http://www.dfg.ca.gov/whdab/html/rarefind2.html). RareFind 2 contains all of the textual data associated with the CNDDB. It can be used alone or linked with the GIS application ArcView for even greater flexibility. The digital GIS data is included in the CNDDB subscription. Contributed by Phil Hoehn, philhoehn@juno.com.
Union List of Fire Insurance Maps Now Online

The Western Association of Map Libraries announces that its Union List of Fire Insurance Maps is online at http://www.lib.berkeley.edu/EART/sanbul.html. This work, which is still in progress, will combine the holdings from the three lists of Sanborn fire insurance maps issued by the Association: Catalogue of Sanborn Atlases at California State University, Northridge by Gary W. Reese and Mary Hoeber (Occasional Paper No. 1, 1973), Union List of Sanborn Fire Insurance Maps Held by Institutions in the United States and Canada, Vol. 1 (Alabama to Missouri) by R. Philip Hoehn (Occasional Paper No. 2, 1976) and Union List of Sanborn Fire Insurance Maps Held by Institutions in the United States and Canada, Vol. 2 (Montana to Wyoming; Canada and Mexico) by William S. Peterson-Hunt and Evelyn L. Woodruff With a Supplement and Corrigenda to Vol. 1 (Occasional Paper No. 3, 1977). The first priority for inclusion of entries from the above works will be for states and provinces within the Association’s region of interest, from the Rocky Mountains and west to Hawaii. Other priorities are corrections to the original lists, and the inclusion of free online maps. Online maps from commercial publishers will not be included, at least initially. The initial pages cover Alaska and California, plus 3 cities in Kentucky, Maine and Virginia covered by online maps. Nevada, Utah, British Columbia and New Mexico will be coming soon. Contributed by Philip Hoehn, philhoehn@juno.com.

Hazardmaps.gov

Hazardmaps.gov is a public online, interactive mapping resource for multi-hazard planning and management efforts. Developed and maintained by FEMA, it addresses the needs of many organizations and agencies for immediate and continuous access to natural hazards data and data supporting natural hazard assessment and planning. The two main components of the site are a WebGIS Atlas, an interactive mapping resource, and a Data Clearinghouse, an extensive data archive that allows free uploading and downloading of data.

The vision of FEMA’s Multi-Hazard Mapping Initiative is to maintain a living atlas of hazards data and map services for advisory purposes, supplied from a network of hazard and base map providers. The initiative is an implementation of Section 203(k) of the Disaster Mitigation Act of 2000, which calls for the creation of Multi-Hazard Advisory Maps, or maps “on which hazard data concerning each type of natural disaster is identified simultaneously for the purpose of showing areas of hazard overlap.” The goals of the initiative are to:

- Foster the exchange and collection of geospatial hazards data
- Increase hazard awareness by providing a multi-hazard mapping capability on the Internet
- Encourage data providers to establish standards-based services that facilitate access and distribution of data for the creation of these maps.

The initiative is compatible with and shares the goals of FEMA’s E-Government Initiative, the Department of Interior’s E-Government Initiative, Geospatial One-Stop and the National Map.

Objectives of the initiative with respect to data interoperability include:

- Implementing relevant interoperability specifications of the Open GIS Consortium and other organizations.
- Making the FEMA holdings of the Multi-hazard Map server available as a Web Map Service.
- Multi-hazard Map server utilization of specific external Web Map services for relevant available base and hazards data.
- Reviewing and testing relevant specifications to further the goals of the Multi-hazard Mapping Initiative and Geospatial One-Stop.

Lewis & Clark Expedition GIS

To mark the 200th anniversary of the Lewis and Clark Expedition and share the cartographic history of the exploration, approximately 30 of the most significant historical maps of the region from the David Rumsey Collection are now available online via the GIS Viewer at http://www.davidrumsey.com/.

This visual voyage of discovery through the map history of the Lewis and Clark Expedition starts with pre-expedition maps of the early 1800’s, then includes Lewis’ original 1814 map of the expedition routes, next carries through to the first complete Government Land Office surveys of the late 1800’s, then into the modern age 1970 National Atlas, and finally to the space age of satellite imagery. The David Rumsey GIS Viewer allows online visitors a unique opportunity to easily interact with, integrate, and visualize these historic maps along with the modern geospatial data from NASA, USGS, ESRI and GCS Research.

The modern geospatial data that can be overlaid and compared to the historical maps includes urban areas, transportation infrastructure (roads,
rail), public land survey, lakes, parks, state boundaries, digital elevation models and satellite imagery. Users can create, save, and print custom maps and interactively blend/fade/merge and overlay/swipe multiple map layers, enabling real-time visual change analysis over the Internet. Results of the user-customized map layer visualizations can be saved and downloaded as new images, complete with the georeferencing information, thereby allowing easy integration into other desktop GIS applications. Contributed by Phil Hoehn, philhoehn@juno.com.

Oklahoma Dust Bowl

The U.S. Government Information Division at the Oklahoma State Library has created a new web page that examines the question: is the Dust Bowl returning? A current severe drought in the area of the 1930’s Dust Bowl is reminding some old-timers of the historic Dust Bowl. The web site features a map of the Dust Bowl in Oklahoma that was surveyed and drawn by the Oklahoma Erosion Survey in 1934 and published by the U.S. Soil Conservation Service. The web page also links to a 1936 report on the drought in the Great Plains states, and to current information about the drought in the U.S. and Oklahoma. The URL is: http://www.ods.state.ok.us/usinfo/dustbowl/index.htm. Contributed by Steve Belew, sbelew@oltn.ods.state.ok.us.

Glacial Lake Agassiz Online

Warren Upham’s 1895 publication, Glacial Lake Agassiz, USGS Monograph XXV is now available on the Web: http://www.lib.ndsu.nodak.edu/govdocs/text/lakeagassiz/. This scanning project was a 3 year labor of love by Kathy Thomas, North Dakota State University’s Government Documents Librarian Kathryn Thomas@ndsu.nodak.edu. Contributed by Lura Joseph, luraj@staff.uiuc.edu.

Teaching History with GIS

A ThinkQuest site contains a collection of free temporal GIS data that can be downloaded to allow users to develop historic maps using GIS. Using this data, anyone can develop their own maps of historic periods. In addition to the geographical information, the site contains historical data to accompany the maps. The site can be found at: http://library.thinkquest.org/C006628/index.html. Contributed by Patrick Florance, florance@fas.harvard.edu.

Apollo Image Atlas Adds Photos

The Apollo Image Atlas (http://www.lpi.usra.edu/research/apollo/index.htm) is a collection of photographic images of the moon taken during the Apollo Saturn missions which can be viewed over the Internet. It contains over 10,000 images, including 584 images taken during the Apollo 13 mission and 1336 Apollo 14 images, which were recently added to the collection. For questions or comments about this dataset please contact Paul Spudis at spudis@lpi.usra.edu. Contributed by David Bigwood, bigwood@lpi.usra.edu.

Web Page on Early Map and Book Thefts

A series of webpages have just been mounted, in response to the series of thefts in recent years of early maps from libraries in North America and Europe. Entering via the menu http://thr.sas.ac.uk/maps/thefts.html gives access to four specific pages: How should we respond to early map thefts? Links relating to the theft of early books and maps, Report of the ‘Responding to Theft’ seminar (National Library of Wales, 25 April 2002) and European map thefts (2001).

The third page carries a report of a seminar, held this summer in Aberystwyth which concluded that what was most needed to ensure a better response to future thefts was more effective coordination (internationally) within the research library and archive communities, and between those groups and the trade networks. Participants also supported the immediate disclosure by institutions, firstly of the circumstances of the theft, and secondly of the full details of what had been taken. In that way, other libraries would be forewarned, and the trade could assist in apprehending the thieves and recovering the stolen items. A publicly accessible, web register (with the name of the institution concerned suppressed if it wished) was suggested as the best way forward, provided that copy-specific details were included.

‘How should we respond to early map thefts?’ explores those suggestions in greater depth, in a personal capacity. The extensive list of Links (many of which relate to Rare Books) details ‘the networks and practices of institutions and the trade, and the reporting of thefts’. If this issue concerns you, please take a moment to look at these pages and provide comments, corrections or additions to Tony Campbell t.campbell@ockendon.clara.co.uk (former Map Librarian, British Library).
Periodical Articles

McClelland, M., and others, 2002. Challenges for Service Providers

When Importing Metadata in Digital Libraries. *D-Lib Magazine*, v. 8, no. 4

SimCity, Real Life. *Newsweek*, v. 140, no. 6, p. 9.

US Federal, State and Local Government News

2002 Recommended Specifications for Public Access Workstations in Federal Depository Libraries

In accordance with Depository Library Council action at its Spring 2000 meeting, these recommended specifications will become requirements October 1, 2003. These recommended specifications are intended to assist depository librarians who are planning purchases of new personal computers (PCs) for public use in Federal depository libraries. This document supersedes the Federal Depository Library Program (FDLP) “Recommended Specifications for Public Access Workstations in Federal Depository Libraries” (Administrative Notes, v. 21, no. 9, June 15, 2001). LPS works with Cartographic Users Advisory Council (CUAC) to develop additional specifications which support GIS applications. These are included in the re-recommendations with the indicator: FOR CARTOGRAPHIC DATA USE: All depositories are not required to meet the cartographic specifications. They are meant to assist with planning purchases for those libraries that support and provide data services using spatial data and GIS applications. The “regular” specifications will allow for basic mapping applications. Census maps will be available in multiple formats, including PDF, so large-scale equipment will not be necessary, though consideration should be given to purchasing a color printer.

Recommended New Workstation Configuration

COMPUTER

Processor - Intel chip, 1 GHz Pentium 4 or AMD Athlon processor minimum.

FOR CARTOGRAPHIC DATA USE: 1.5 GHz processor

Memory (DDRRAM Double Data Rate) - 256 MB (expandable) minimum.

FOR CARTOGRAPHIC DATA USE: 512 MB DDRRAM

Ports - One (1) Serial; One (2) Universal Serial Bus (USB); One (1) Parallel; One (1) PS/2 Mouse; One (1) SVGA Video (if video is built into system board); One (1) IEEE1394 Firewire port.

I/O bus - PCI. Should have at least four available PCI or shared PCI/ISA slots after system is configured for delivery.

Video - 64 or 128 bit PCI interface SVGA controller. Should come with 16 MB Windows RAM (WRAM) or Video RAM (VRAM), and be expandable. Recommend the selected device provide MPEG hardware acceleration.

FOR CARTOGRAPHIC DATA USE: 64 or 128 bit PCI interface SVGA controller with 32 MB WRAM or VRAM.

Audio - Sound Blaster PCI64 sound card or compatible.

Drive Bays - One (1) 3.5” half-height (HH); Two (2) 3.5” HH Internal. See Related Issues and Considerations below for information on 5.24 drives.

DISK DRIVES AND STORAGE

Hard Disk Drive - 40 gigabytes (GB) capacity or greater, partitioned into smaller drives for quicker access time.

EIDE (enhanced integrated drive electronics) interface that conforms to the ATA/100 specification. Rotational speed of 7,200 rpm. 4MB cache memory. Consider additional hard drive space (60GB) for online video use, to increase the number of CDs that can be installed or to allow for electronic files to be stored.

FOR CARTOGRAPHIC DATA USE: 60.0 GB or greater capacity, or network connectivity that provides the same.

Removable/External Storage - 3.5” 1.44 MB drive. Use an older system for 5.25” floppy conversion. Also, if system does not have internal CD-R/RW drive, strongly recommend additional external and/or exchangeable drives, especially drives such as CD-R/RW, Zip or Jaz drives for downloading files too large to fit on a regular floppy disk or for large scale back-up.

DVD Drive - 6x speed minimum, 8x recommended. Ensure compatibility with CD-ROM, CD-R, CD-RW, DVD-ROM, DVD-Rs. Must have a MPEG-2 decoder card for video.

FOR CARTOGRAPHIC DATA USE: 8X DVD. Single platter or changer design. Should support all available standard CD formats. Avoid proprietary I/O designs.

CD-RW Drive - Most new systems now come equipped with a CD-R/RW drive. Look for rotational speeds of 20x10x40 (read/write/rewrite).

FOR CARTOGRAPHIC DATA USE: 4x4x24x (rotational speeds to read/write/rewrite).

PERIPHERALS

Monitor - 17” Super VGA (SVGA)
Multimedia monitor with a dot pitch range between .22 to .27 mm. Look for a refresh rate of at least 60MHz. Consider flat panel (15" or larger) for staff or in public areas with limited space. The dot pitch is not an issue with LCD monitors but, rather, look for a viewing angle of at least 140 degrees.

FOR CARTOGRAPHIC DATA USE: 21" monitor, Super VGA (SVGA), with at least 85 MHz vertical refresh rate at 1024x768 resolution non-interlaced, 0.28 or smaller dot pitch; display card which supports 1024x768 resolution at 70 MHz or faster.

Printer - Ink Jet or laser printer. Must support PostScript. 10MB Memory, minimum. More recommended if using PostScript or color. Consider purchasing a color printer for clearer output of color maps and graphical representations.

FOR CARTOGRAPHIC DATA USE: Color ink jet printer, 36", 600 dpi, 80 MB or more memory, or access to comparable networked printer

Keyboard and Pointing Device - Microsoft-compatible keyboard, plus mouse or other compatible device. Strongly recommend ergonomic ally-designed products.

Internet Connectivity - Local Area Network with TCP/IP (Strongly Recommended) or Broadband connections such as Digital Subscriber Line (DSL) or Cable

SOFTWARE

Operating System - Most new computers with a Windows-based operating system come preinstalled with either Windows NT, 2000 or Windows XP. XP Home and XP Professional have security and virus protection features well suited for public access workstations.

Client Software - World Wide Web graphical browser with forms support. Java-enabled browsers such as Internet Explorer 4 or Netscape Navigator 4 or greater are required for use of some online databases. IE 5.5 or Netscape 6.2 are recommended. It is recommended that workstations have virus protection software installed and regular updates scheduled.

Viewers - WWW graphical browser (see above) that handles both GIF and JPEG graphics. Viewers for other formats such as tiff, wpdf, doc, xls, dbf, mdb, and pdf should also be available. Later versions of pdf viewers have a search capability. Adobe Acrobat Reader 5.0 supports assistive screen readers. A multimedia player(s) to access rm, mpeg, avi and mov formats.

FOR CARTOGRAPHIC DATA USE: GEOTIFF file viewer. Viewing software for raster data, such as Photo Shop Pro or Print Shop.

Applications Software - If the library offers services that require applications software, consider an integrated "office suite" product such as Microsoft Office, Corel WordPerfect Office or Lotus SmartSuite. Otherwise:

Database - dBASE file format compatible or dBASE and ASCII comma delimited file importing database management software; useful to have fixed field format (SDF) import ability.

Spreadsheet - Lotus .WK1 file format compatible software; support for other formats such as Excel and Quattro Pro.

Word Processing - Software (Microsoft Word, WordPerfect, WordPro, etc.) capable of importing major text file formats, e.g., ASCII text and RTF files.

Mapping Software - FOR CARTOGRAPHIC DATA USE: Data manipulation package, such as ArcView 3.1 or higher, Landview, MapInfo 4.5 or higher, or another similar package.

Related Issues and Considerations

These specifications are intended to assist depository staff in making informed purchases which will best achieve the goal of providing public access to Federal Government information in a variety of electronic formats. These guidelines are aimed at providing reasonably robust workstations which should provide years of service before they become obsolete, but LPS encourages the purchase of equipment that exceeds these specifications if at all economically feasible. The speed at which computer capabilities are evolving indicates that the higher the initial outlay, the longer the useful life for the equipment. If a higher end system is not affordable, look for flexibility and expandability in the system that will allow for enhancements and upgrades at a later date. As these guidelines address minimums, ensure compatibility among chosen components before purchasing.

Depository libraries must have computer equipment sufficient to allow timely and equitable public access to Government electronic information products and should allow printing or downloading information selected by the user. During a depository library inspection LPS will use a functional approach to determine compliance with this requirement.

5.25 floppy drives: If your library still has depository materials on 5.25" floppy disks, you must have the
equipment for patrons to access these products. Finding a new computer with a 5.25" drive will be difficult. Consider keeping an older computer or converting the disks to 3.5"

Census maps will be available in multiple formats, including PDF, so large-scale equipment will not be necessary, though consideration should be given to purchasing a color printer. Viewers versus full working versions of applications software: If viewers are available on computers to allow access to Government information in the various formats this is acceptable and the library will meet the minimum technical requirements. While providing applications software and/or staff support to help patrons manipulate data or create reports is desirable, it is optional. This position is consistent with Depository Library Public Service Guidelines For Government Information in Electronic Formats.

The Workforce Investment Act of 1998 (August 7, 1998) amended §508 of the Rehabilitation Act of 1973 to require “individuals with disabilities, who are members of the public seeking information or services from a Federal department or agency, have access to and use of information and data that is comparable to that provided to the public who are not individuals with disabilities.” Federal depository libraries must provide hardware and software to allow this or accommodate users in some other manner. Electronic and Information Technology Accessibility Standards; Final Rule was published in the December 21, 2000 (pp. 80499-80528) issue of the Federal Register. Further guidance on these issues is available from: http://www.access-board.gov/508.htm, http://www.usability.gov/accessibility and http://www.section508.gov.

Libraries should determine if they need to duplicate depository CD-ROMs to preserve data or to create circulating copies. If the need is there, the library should consider purchasing a CD-R (compact disc recordable) or a CD-RW (compact disc rewritable) drive. These can be purchased as either internal or external drives. With a CD-RW the discs can be reused, unlike CD-R disks that can only be used once. The other major difference between CD-Rs and CD-RWs is that CDs created from a CD-R can sometimes be read in older CD-ROM drives while those created from a CD-RW can only be read from MultiRead drives. This is something to consider particularly if creating circulating copies and want to meet the needs of most users. Be sure to check compatibility with your operating system.

LPS cannot anticipate or address every depository library computer scenario; depository libraries are encouraged to adapt this menu of specifications to fit their local situations. Depositories may require multi-purpose single workstations, electronic access in networked environments, or a combination. Given the large variation in the size of Federal depository libraries and numbers of users served, LPS cannot recommend a universal standard for the number of public access workstations in any given library. However, when assessing workstation needs, librarians should consider local factors such as:

• the amount of information provided over the Internet compared with the amount from CD-ROM
• whether and how the workstations are networked
• to what extent users are permitted to perform additional information processing at the public access workstations
• whether users are experiencing extended waiting times at library peak service hours, etc.

When configuring workstations bear in mind that some government CD-ROM products now link to the Web to update information on the CD-ROM. This means that for the user to get the newer information and the full benefit of the product at least one workstation must have both CD-ROM capability and Internet accessibility with a graphical browser.

Additional or different capabilities may be desirable for workstations used by library staff. Some libraries may elect to add applications software, such as spreadsheet, word processing, or database software, to their public access workstations, but this is a local resource management decision.

Many depository libraries have existing computer equipment that is no longer “state of the art.” These specifications should not be applied retrospectively to existing equipment, although they may assist in determining the appropriate time for replacement or upgrading. Libraries should also consider keeping older equipment in order to access electronic products that cannot be read with newer hardware and software. For additional information, or to ask questions about these specifications, please contact Cynthia Etkin, Program Analyst, at cetkin@gpo.gov or telephone (202) 512-1114.

Depository Library Finding Aid

As a result of feedback received from the Federal Depository Library Council, the U.S. Government Printing Office has enhanced the ability to locate a Federal depository library through the addition of a clickable map of the United States. Simply choose a state, commonwealth, or territory to view a complete list of
Federal depository libraries in that area.

In addition to the map, options are available to view all depository libraries in alphabetical order or search by state, commonwealth, or territory (a pull-down list is now provided); area code; or congressional district (a pull-down list by abbreviation is now provided). The map finding aid to Depository libraries can be found at: http://www.access.gpo.gov/su_docs/locators/findlibs/index.html.

Government Printing Office Under Fire

OMB Memorandum M-02-07, URL: http://www.whitehouse.gov/omb/mands/m02-07.pdf is attempting to open federal printing to competition by allowing private firms to compete for $500 million worth of federal printing and copying contracts.

According to a press release issued concerning the Memorandum, competition for Federal Printing could save at least $50 million to $70 million annually. The OMB directive would eliminate GPO’s role as a broker and allow private firms to bid for printing contracts directly from federal agencies and departments. The directive, which does not apply to printing sensitive to national security, asks that federal agencies and departments comply by September 1, 2002. According to an article in Roll Call (May 9, 2002, URL: http://www.rollcall.com/pages/news/00/2002/05/news0509f.html), Public Printer Michael DiMario had no plans to take legal action concerning the order. He did point out that the order would conflict with the US Code. This is not the first to attempt to reduce or eliminate the role of the GPO in government printing. Both the Reagan and Clinton administrations put forth similar proposals. One concern about the memorandum is that it could reduce public access to federal government publications which libraries receive through the Federal Depository Library Program. The OMB letter states that departments must continue to distribute documents to comply with federal law.

Census Bureau Publication Traces Census-Taking History

Since 1790 when US marshals traveled on horseback over rutted backwoods trails to enumerate the residents of a new nation, a census of population has been taken every 10 years. The Commerce Department’s Census Bureau today released a report that traces the evolution of the population census from 1790 to 2000.

The report, Measuring America: The Decennial Censuses from 1790 to 2000, a PDF file available at http://www.census.gov/prod/2002pubs/po02-ma.pdf, contains images or descriptions of the questionnaires used in each census, along with the instructions given to census-takers on how to fill out the form. Also included is a synopsis of how each census was conducted and information about its historical significance. On its cover is a reproduction of a Norman Rockwell painting of a census enumerator at work, which appeared on the cover of The Saturday Evening Post in 1940.

The publication tracks development of the census from a relatively primitive exercise in 1790 to the highly sophisticated operation that took place in 2000. In 1790, marshals counted 3.9 million U.S. residents. Householders were asked a variety of questions to count the population and assess the new nation’s industrial and military capacity. The 2000 Census, in contrast, counted 281.4 million and included a first-ever, $167 million paid advertising campaign and the option of responding to the census online.

The publication is a resource for those doing census-related research, including genealogists attempting to learn more about their ancestors and historians and demographers looking for a snapshot of life in America at a given point in the nation’s history. It is intended to assist census data users in interpreting the responses they find on census forms, as well as the summary statistical tables. The publication updates and expands on 200 Years of Census Taking: Population and Housing Questions, 1790-1990, which was last published in 1989.

Census Bureau Lists Facts About US Counties & Cities

Maricopa County, Ariz., added more people than any other county during the past decade; the population of Douglas County, Colo., grew the fastest; Anchorage’s land area is more than twice as large as the second most expansive city, Jacksonville, Fla. These are just a few of the facts from the County and City Data Book: 2000, released recently by the Commerce Department’s Census Bureau.

“The latest edition of the county and city data book, which has been published intermittently since 1944, is full of useful information on people, businesses, taxes, federal government spending and health for all of the nation’s counties,” said Wanda Cevis, statistician and technical coordinator of the publication. “It also contains
figures from retail sales to average annual temperatures and precipitation for the country's largest cities."

In addition to data from Census 2000, the book incorporates information from Census Bureau economic surveys, the Bureau of Economic Analysis, the Bureau of Labor Statistics, the FBI and private nonprofit organizations such as the American Hospital Association.

The book is available from the U.S. Government Printing Office (stock no. 003-024-08862-2; $68) by calling (202) 512-1800 in Washington, D.C., or 1-866-512-1800. It is also available from National Technical Information Service (stock no. PB2002-101674; $65) by calling (703) 605-6000 in the Washington, D.C., area or 1-800-553-6847. A CD-ROM version of the book will be available later this year.

Census 2000 Urbanized Area & Urban Cluster Information

The Census Bureau has completed delineating Census 2000 urbanized areas (UA) and urban clusters (UC). Information on the Urban area classification appeared in a Federal Register notice - Qualifying Urban Areas for Census 2000. The notice contains a list of the Census 2000 Urban Areas and their populations, a list of new UAs based on Census 2000, a list of 1990 census Urban Areas that were combined or split, a list of 1990 census UAs that have had significant changes, and a list of 1990 census Urban Areas that have had name changes. The notice documenting Qualifying Urban Areas for Census 2000 can be found in the Federal Register, v. 67, no. 84, Wednesday, May 1, 2002 / Notices. URL: http://www.access.gpo.gov/su_docs/fedreg/a020501c.html.

FEMA Unveils New Map Search Tool

A new, easier-to-use map search tool is now available to assist customers in finding the NFIP products for a specific address or area. With just two mouse-clicks a map for a given address can be found and added to the shopping cart. The new tool offers many other improvements including:

• More intuitive navigation tools such as Zoom in, Zoom out, Pan & Zoom to Window. These tools perform the same way as the online image viewer in the Digital Post Office.
• More intuitive selection tools such as the "point" and "box" tool that permit customers to dynamically select products.
• Better quality base maps with more detail and a better legend that allow the customers to see streets, parks, rivers and other features.
• Better selection results that will delineate the difference between areas with effective maps and other areas where the maps may be non-printed or an area may be unmapped.
• A direct link to the Web Catalog allows users can view scanned images.

A link to the map search tool is available on the Map Service Center Online Store web site at: http://web1.msc.fema.gov/webapp/commerce/command/ExecMacro/MSC/macros/welcome.d2w/report. To provide feedback on the site, send comments to MSCService@fema.gov.

NOAA-M Environmental Satellite Launched

A new NOAA satellite that will improve weather forecasting and monitor environmental events around the world was launched June 24, 2002. The NOAA-17 satellite lifted off from Vandenberg Air Force Base, Calif. on an Air Force-launched Titan II rocket. NOAA-17 is the third in a series of five polar-orbiting satellites with improved imaging and sounding capabilities that will operate over the next 10 years. Like other NOAA satellites, NOAA-17 will collect
meteorological data and transmit the information to users around the world to enhance weather forecasting. In the United States, the data will be used by NOAA's National Weather Service for its long-range weather and climate forecasts, and many other users of environmental data and products around the world.

NOAA-M was built by Lockheed Martin Space Systems Co., Sunnyvale, Calif., and launched for NOAA under technical guidance and project management by NASA's Goddard Space Flight Center. NASA will turn operational control of the NOAA-17 spacecraft over to NOAA 21 days after launch.

Environmental Sensitivity Index Mapping by NOAA

Environmental Sensitivity Index mapping is a national NOAA program to characterize the coastal areas of the U.S. by providing a detailed and consistent source of information as a critical tool in oil spill response. Environmental Sensitivity Index (ESI) maps help reduce environmental consequences of spills and cleanup efforts by identifying shoreline sensitivity to oiling and important natural and human-use resources.

Oil spill planning and response remains the primary use of these maps, however they are finding ever widening use in such areas as coastal resource inventories and assessments, coastal planning, and recreational planning.

Environmental Sensitivity Index (ESI) maps are an integral component in oil-spill contingency planning and assessment. They serve as the first source of information in the event of an oil spill incident. ESI maps are a product of the Hazardous Materials Response Division of the Office of Response and Restoration (ORR). ESI maps contain three types of information: shoreline classification (specifically, sensitivity to oiling), human-use resources, and biological resources. This information is plotted on 7.5-minute USGS quadrangles. ESI atlases, have been prepared for most U.S. shorelines, including Alaska and the Great Lakes. The atlases are being converted to electronic format for distribution on CD-ROM.

ESI maps are grouped into ESI atlases (e.g., Southern California, South Carolina, etc.). Atlas descriptive files are available and helpful in interpreting and using ESI maps. These files are available for direct download in PDF format from http://mapfinder.nos.noaa.gov/mapfinderHTML3/surround/esi/atlas.html. In addition, all atlases are offered in NOS MapFinder: http://mapfinder.nos.noaa.gov/default.html.

Policy Change for Aerial Photo Custom Enlargements

For most USGS photographic products, customers can order a custom enlargement showing a specific area of the photo with a potential enlargement factor of up to 16X the original size of the area. Ordering a custom enlargement is generally a two-step process, in which the customer first orders a 9x9" contact print and then places a second order specifying the area to be enlarged based on that original print. The customer returns the annotated print showing the area to be enlarged to EROS Data Center along with a second order form and payment information.

In the past, customers were given credit for the original print when they placed the order for an enlargement. As of June 1, 2002, credit will no longer be given for the return of the original print. Upon completion of the order, the custom enlargement product and the original 9" x 9" print will be shipped to the customer.

Celebrating 30 Years of Imaging The Earth

NASA and the US Geological Survey are celebrating Landsat's 30th anniversary of imaging the Earth. On July 23, 1972, NASA launched the first Landsat satellite beginning what is now the longest record of the Earth's continental surfaces as seen from space. It is a record unmatched in quality, detail, coverage and value. This 30-year archive of imagery, a scientific partnership between NASA and the US Geological Survey (USGS), provides an invaluable historical record that helps us understand and protect our home planet.

"In essence, this archive of Landsat imagery is the equivalent of having a periodically refreshed family photo album for the entire Earth," said Dr. Ghassem R. Asrar, NASA Associate Administrator of the Office of Earth Science. "The scientific data gathered by these spacecraft allows us to see changes on the Earth's surface over time, giving us insight into what is happening and helping us plan for the future."
In celebration of the 30th anniversary of the first Landsat launch, NASA and USGS have assembled an exhibit called “Landsat: Earth as Art.” These images, created by the USGS EROS Data Center using Landsat 7 data, introduce the general public to the Landsat Program, administered jointly by USGS and NASA. USGS operates Landsat 5 and 7 and manages the national archive of data collected by all of the Landsat satellites, distributing these data to researchers around the world.

“This archive of imagery is a valuable tool for scientists and researchers as they work to gain a better understanding of the Earth and its complex systems,” said Charles Great, USGS Director. “Long-term monitoring . . . is critical for maintaining the health and safety of our communities, our economy and our environment.”

The “Landsat: Earth as Art” exhibit highlights 41 images that were selected on the basis of aesthetic appeal. The exhibit opens July 23 at the Library of Congress in Washington. A selection of the “Landsat: Earth as Art” images will be on display in the Senate Russell Office Building Rotunda in Washington, July 22-26, and the fall at the Arizona Science Center in Phoenix. Another similar exhibit is currently on display in Rapid City, S.D., at the Children’s Science Center.

The first Landsat, originally called ERTS, for Earth Resources Technology Satellite, was developed and launched by NASA in 1972. Landsat 5 is still transmitting images; the Landsat 7 mission has built upon the historic strengths of the Landsat program. The low cost of Landsat 7 data, as well as the elimination of data copyright, has fostered an environment in which users are free to experiment with novel applications, and use large quantities of data for existing applications.

The data from these Landsat satellites serve many purposes. Landsat satellites monitor important natural processes and human land use such as vegetation growth, deforestation, agriculture, coastal and river erosion, snow accumulation and freshwater reservoir replenishment, and urbanization. USGS uses Landsat data to spot the amount and condition of biomass on the ground, which are potential sources for feeding wildfires that can threaten humans, animals and natural resources. Farmers and land managers use Landsat data to help increase crop yields and cut costs while reducing environmental pollution.

Continuity of data with previous Landsat missions is a fundamental goal of the Landsat program. Landsat Program Management (NASA and USGS) is required by public law to continue gathering and preserving this important scientific data. The planned follow-on to the Landsat program, the Landsat Data Continuity Mission (LDCM), is a cooperative effort between Government and private industry to provide continuity of land surface measurements beyond Landsat 7 without any data gaps. Based on the Science Data Specification and Data Policy, jointly specified by NASA and USGS, LDCM data and data products will be provided by a commercially owned and operated system.

Landsat is part of NASA’s Earth Science Enterprise, a long-term research effort to understand and protect our the Earth. Through study of Earth, NASA helps to provide sound science to policy and economic decision makers to improve life here, while developing the technologies needed to explore the universe.

A Landsat Video File will air July 22, 23, and 24 on NASA TV. Replays will air at 7 a.m., 1 p.m., 4 p.m., and 10 p.m. EDT. NASA Television is available on GE-2, transponder 9C at 85 degrees west longitude, with vertical polarization. Frequency is 3880 MHz with audio on 6.8 MHz. For more on the Landsat mission, go to: http://landsat.gsfc.nasa.gov or http://landsat7.usgs.gov. The Earth as Art web site can be found at: http://landsat.gsfc.nasa.gov/earthasart/.

New National Atlas Map Reveals Old Voting Patterns

The map shows fifty-four election results, from George Washington in 1789 to George W. Bush in 2000 are depicted in this colorful new map. The map presents an interesting and concise summary of how the presidents were elected and how the views of voters have changed over the years. It includes a detailed map for the 2000 elections that shows the winner of the popular vote by county. In addition, the National Atlas introduced a series of printable elections maps. These 14 page-size maps are designed for personal printing and online viewing (http://nationalatlas.gov/printed.html). Users can also go online to make their own maps using the National Atlas interactive mapper.

Begun in 1997 and led by USGS, the National Atlas is a collaboration
between private sector business and more than twenty federal agencies. The National Atlas makes authoritative, reliable geographic information more readily accessible to the public. The National Atlas (URL: http://www.nationalatlas.gov) provides a comprehensive map-like view into the enormous wealth of data collected by the federal government. Americans are using it to draw a new map every 1.2 seconds. Copies of the map, *Presidential Elections, 1789-2000* (Item 112283) are available from the USGS for $7 plus a $5 shipping and handling fee by calling 1-888-ASK-USGS. More information about the Presidential Elections map and other National Atlas maps is available at http://nationalatlas.gov/atlasmap.html.

Arizona GeoServer

The Arizona GeoServer provides access to coordinate control data developed by participating agencies. The GeoServer is a coordinate control clearinghouse implemented using ArcIMS technology. GeoServer functionality includes: View Control Points, Identify or Select Control Points, Search for NGS Control, Download NGS Data and Create Printable Maps.

The GeoServer is maintained by the Arizona State Cartographer’s Office. Control data consists of National Geodetic Survey (NGS) control and City of Prescott data classified as Other Control. Data from the Arizona Land Resource Information System (ALRIS) provide a mapping reference to the location of the control points. The data are displayed in Latitude/Longitude - Decimal Degrees.

Metadata for the ALRIS layers is available at http://www.land.state.az.us/alris/htmls/data2.html. The NGS data is documented in the NGS *Blue Book* (http://www.ngs.noaa.gov/FGCS/BlueBook/).

California Seismic Hazard Maps Released

Three official Seismic Hazard Zone Maps were released on June 21, 2002. Areas covered include parts of Orange, Ventura and Santa Clara Counties.

Maps and Evaluation Reports may be viewed at the Seismic Hazards Mapping website (http://gmw.consrv.ca.gov/shmp/). Preliminary Seismic Hazard Zone Maps for the Fillmore, Ojai, Piru, Val Verde, Pitas Point, Oxnard, Saticoy, and Santiago Peak quadrangles have been released for public review. New information developed during the liquefaction analysis of Saticoy resulted in a zone change on the previously published Oxnard quadrangle; that map has been revised. Ongoing work in Ventura County will complete the zoning of the southern half of the county within a year. The Santiago Peak quadrangle is the only quadrangle released in Orange County. When that map becomes official in December, zoning for Orange County will be complete. Technical review comments regarding these 8 new maps should be forwarded to the State Mining and Geology Board in Sacramento before September 21, 2002.

Standardizing California Vegetation Mapping

A recent meeting of vegetation mapping agencies, including the California departments of Forestry, Conservation, and Fish and Game, the US Forest Service and Bureau of Reclamation, and the California Native Plant Society was held to discuss standardizing mapping and classification products. The *California Native Plant Society Bulletin* (v. 32, no. 1, Jan.-Mar. 2002, p. 5) reports:

“The final outcome will be a list of recommended standards that will be put forth statewide. This will make all future vegetation maps and classifications more compatible and will set rules that will clarify the appropriate use of different scales of maps and classifications depending on the needs and requirements of specific projects.”

Colorado Industrial Mineral Mine Site Digital Inventory

The Colorado Geological Survey recently announced a new publication titled *Digital Inventory of Industrial Mineral Mines and Mine Permit Locations in Colorado*. Industrial minerals include construction materials such as sand and gravel, crushed stone, limestone, and clay, as well as the more specialized industrial minerals such as gypsum, nahcolite, and fluor spar.

The publication, on CD-ROM, consists of Geographic Information System (GIS) shapefiles that contain location and commodity information for industrial mineral deposits in the state. Additional digital map data have been included to provide the user with geographic references for the mine locations. These include a color shaded-relief map of the state, cities & towns, highways, railroads, rivers, and streams. Easy-to-use, free software from ESRI is provided on the CD for those who do not already have GIS software.

The mine location and commodity information were derived from two distinct databases of industrial minerals locations. One data set is derived from the Colorado Division
of Minerals and Geology mine permit database as of June, 2001. It includes all industrial mineral mines active in 2001 as well as locations of mine permit applications, whether or not the sites ever became mines. This permit data goes back to 1973 and includes the names of permitted industrial mineral mines and mine operators.

The other data set was created from a statewide set of maps compiled in 1981 by the Colorado Geological Survey. This includes mines that were active at that time as well as long-abandoned mines. A digital copy of the text report describing industrial minerals in Colorado that accompanied this map series is also on the CD.

Copies of the CD-ROM (IS-62) are available for $15 + shipping & handling, from the Colorado Geological Survey. To order, write or call the Colorado Geological Survey, Publications Section, 1313 Sherman Street, Rm. 715, Denver, CO 80203, E-mail: cgspubs@state.co.us; Fax: (303) 866-2461; Phone: (303) 866-2611. Visa & MasterCard are accepted. A list of other CGS publications is available at http://geosurvey.state.co.us.

INSIDE Idaho: Idaho GIS Data Clearinghouse

The Idaho Geospatial Committee (IGC) has announced the selection of the INSIDE Idaho (Interactive Numeric Spatial Information Data Engine) website, operated through the University of Idaho, as the State of Idaho’s official statewide geospatial data clearinghouse. A Geographic Information System (GIS) is the high-tech equivalent of a conventional paper map and constitutes computer systems capable of holding and analyzing data describing location. Unlike a paper map, where “what you see is what you get,” a GIS combines many layers of information for viewing and/or analysis.

The web site (http://www.insideidaho.org) is a cooperative data sharing effort between the University of Idaho and many federal and state agencies and local communities. The site demonstrates how government-collected and distributed data can be made more readily accessible to the public — data previously available only through requests to agencies or by visiting a library. From the INSIDE Idaho home page, viewers can access a multitude of spatial and numeric data for research and learning; a tutorial covering various aspects of the site; a calendar of events, making visitors aware of GIS-related conferences, workshops, and meetings; as well as aerial photographs of much of Idaho. With the involvement of U.S. Senator Larry Craig, the University of Idaho Library was awarded a 1999 Congressional Appropriated National Leadership grant by the Institute of Museum and Library Services, making INSIDE Idaho possible.

Governor Dirk Kempthorne, through Executive Order 2001-07, recognized the need for a statewide geospatial clearinghouse by directing the IGC to “identify and promote a State geospatial information clearinghouse.” The State’s Information Technology Resource Management Council (ITRMC) also encouraged the IGC’s efforts to establish the clearinghouse. IGC members voted in April to formally recognize INSIDE Idaho as the State’s geospatial clearinghouse. According to Pam Ahrens, ITRMC Chairman, INSIDE Idaho supports Governor Kempthorne’s vision for enabling efficient, digital government and promotes cost-effective, collaborative efforts between state and local government. INSIDE Idaho also serves as a facilitator, bringing people and agencies together to form partnerships, and to exchange technological expertise.

“This is a wonderful opportunity to minimize duplication of effort, to foster cooperative digital data collection activities, and to take advantage of limited fiscal resources,” Ahrens stated. Nathan Bentley, State GIS Coordinator and IGC member, says the success of the site is also due to the voluntary cooperative efforts of federal, state, local, and private organizations throughout Idaho, and the expertise of the INSIDE Idaho project team. “By making efficient use of appropriate and emerging computer technologies, we can share data, resources, and expertise to meet the increasing demands for spatial information by government and business professionals, as well as our citizens,” he said.

New Geologic Map for Area North of Moab, Utah

The Utah Geological Survey’s newest map, the Geologic Map of the Fisher Towers Quadrangle, Grand County, Utah, is now available. The Fisher Towers quadrangle is located approximately 12 miles north of Moab. The Colorado River flows across the northwest corner of the quadrangle. The 1:24,000-scale map and accompanying 22-page pamphlet explain the geology, resources (uranium, copper, and water) and hazards (erosion, debris flows, or floods). Fisher Towers is host to panoramic views of monuments, buttes, and mesas surrounding a low area known as the Richardson Amphitheater. The scenic mesa cliffs rise more than 2,000 feet (710 m) above the amphitheater. This area is considered to be among the most
beautiful in Utah, and has been the setting for several Hollywood western movies and television commercials.

Other geological maps of the area include Geologic Map of the Moab 7.5' Quadrangle, Grand County, Utah (Map 181), and the CD release of the Geologic Map of the Moab and Eastern Part of the San Rafael Desert 30'x60' Quadrangles, Grant and Emery counties, and Mesa County, Colorado (Map 180, paper copy). The CD includes pdf files for immediate viewing of the map, Adobe Acrobat Reader, for viewing the map, and ArcExplorer, for manipulating the map data, are both included.

Anyone interested in obtaining a copy of the Fisher Towers quadrangle, Map 183, or $11.00, or other geological maps, can do so at the Natural Resources Map & Bookstore, located at 1594 West North Temple, Salt Lake City, (888) UTAH MAP, (801) 537-3320, or http://mapstore. utah.gov.

Northwestern Washington State Geologic Map

The long-awaited geologic map of the northwest quadrant of Washington State has been completed and is now available for purchase. The four-color map comes folded in a 9-1/2 x 12-inch envelope containing a 76-page pamphlet and three plates: the geologic map, descriptions of map units, and ages of map units. The map is the result of a multi-year cooperative effort by geologists with Washington DNR’s Geology and Earth Resources Division (the state’s geological survey) with assistance from geologists from the U.S. Geological Survey, several Washington universities, and the local geological community.

DNR geologists have now finished geologic mapping for the entire state of Washington at scales of 1:100,000 (1 inch = approximately 1.6 miles) and 1:250,000 (1 inch = approximately 4 miles). These scales are most appropriate for an overall understanding of the state’s geology and geologic hazards, resource evaluations, land use planning, and geohydrologic studies. DNR’s current geologic mapping efforts focus on the identification and description of geologic hazards in Washington and on the production of larger-scale geologic maps (1:24,000 or 1" = 2,000 feet).

Larger-scale maps allow more precise, site-specific descriptions of geologic hazards, such as landslides, soil liquefaction and ground amplification during earthquakes, and potential debris flows from Cascade volcanoes.

The approximately 4 1/2' x 3' individual quadrant maps make a colorful wall display when mounted separately or together. Copies of the map may be purchased for $10 per copy or $12 for a flat map in a tube from Washington Department of Natural Resources, Division of Geology and Earth Resources, P.O. Box 47007, Olympia, WA 98504-7007, Phone: 360-902-1450, Fax: 360-902-1785, E-mail: geology@wadnr.gov, Web site: http://www.wa.gov/dnr/htdocs/ger/. Contributed (with great joy!) by Connie Manson, connie.manson@wadnr.gov.

Geologic Maps in Theses for Washington State

The Index to Geologic and Geophysical Mapping of Washington recently added a second file. Part II of the Index, which covers thesis mapping, is now available as a PDF file on the Index web site (http://www.wa.gov/dnr/htdocs/ger/mapindex.htm). The first index to thesis mapping of Washington State was prepared by William H. Reichert in 1969. That work was updated to include thesis mapping through 1986 (Manson, 1986); a supplement was issued to cover thesis mapping 1986 to 1998 (Manson, 1999). Part II of this index combines those previous works and includes original thesis mapping received in the Washington Division of Geology and Earth Resources (DGER) library to date. The index shows only pertinent and original mapping at scales from 1:480 through 1:1,000,000 as issued in theses. Superseded maps, sketch maps, mine maps, maps copied from other sources, and non-geologic or non-geophysical mapping have been excluded.

The index is a simple electronic copy of the printed index, not an interactive, searchable database. Users might find it easier to print out the maps and text for easy reference. The text and color maps print to standard 8½- by 11-inch paper. The text portion was originally designed for double-sided printing; therefore, a few intentionally blank pages appear within the text. The color maps were designed for single-sided printing. All map outlines are keyed by number to the Bibliography which gives the full citation for each map, numbered and listed alphabetically by author. If a report includes geologic and (or) geophysical mapping at different scales, the maps are outlined on the separate sheets as appropriate. All the maps and theses listed are held at the DGER library in Olympia, Washington. Materials are not loaned from the library collection, but are available for examination during office hours.

New USGS Publications

The US Geological Survey has recently released several new publications and posters of interest to map
librarians and the general public. They include:

• Fossils Through Time. Poster. Stock no. 16564. Available for $7 plus $5 handling charge per order.

• Topographic Map Symbols. Revised symbols sheet. Available free on request (Stock no.: 100799).

Publications can be requested or ordered from USGS Information Services, Box 25286, Denver, CO 80225, Fax: 303-202-4693. Contributed by Rea Mueller, GS-N-HQ_ESIC_Bulletins@usgs.gov.

New USGS Maps

The US Geological Survey recently issued several new maps of the United States. Among the new maps is Geographic Face of the Nation: Land Cover (Stock no.: 112765) which was compiled in cooperation with the Environmental Protection Agency. The vividly colored map, produced at a scale of 1:4,000,000, portrays a seamless National Land Cover Dataset (NLCD) which was developed using 1992 Landsat Thematic Mapper imagery and supplemental data for the conterminous United States. The printed map depicts 21 different land cover categories at a spatial resolution of 30 meters and represents a mosaic of 48 individual state databases.

The NLCD was produced as a digital dataset to be used in geographic information systems (GIS) for regional-scale environmental analyses, such as watershed management, natural resource inventories, and transportation modeling. NLCD data are used by numerous Federal agencies to meet their land management responsibilities. At full resolution (30 meters), coverage of the lower 48 states requires approximately 14 gigabytes of data. Full resolution digital data for individual states can be downloaded free-of-charge at the following website: http://landcover.usgs.gov/natlndcover.html.

Another new map titled Shaded Relief Map of North America (Stock no.: 112733) was developed as part of the National Atlas of the United States. It was created from a digital file of North American elevation values. Elevation values were first grouped into ranges and assigned colors and processed into relief shading, simulating the illumination of the landscape from the northwest. Then the colors were combined with the relief shading into a map of North America that shows both broad elevation bands and detailed surface features.

Each maps is available for $7 + $5 handling per order from USGS Information Service, Box 25286, Denver, CO 80224. FAX: 303-202-4693. Contributed by Rea Mueller, GS-N-HQ_ESIC_Bulletins@usgs.gov.

Ecoregion Maps for Idaho, Alabama, and Georgia

Two new ecoregion maps are now available for sale. Ecoregion maps show areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources; they are designed to serve as a spatial framework for research, assessment, management, and monitoring of ecosystems and ecosystem components. The titles of the maps are:

The maps are available for $7 + $5 handling per order from USGS Information Services, Box 25286, Denver CO 80225 (FAX: 303-202-4693). Contributed by Rea Mueller, GS-N-HQ_ESIC_Bulletins@usgs.gov.
Employment

Cartographic Materials Cataloger, The Geography and Map Division, Library of Congress. Vacancy announcement available at: http://www.loc.gov/hr/employment. Applicants may apply online at http://www.loc.gov/hr/employment or submit an application kit that includes the completed applicant questionnaire using a scanable form. An application kit may be requested by contacting the Library’s Employment Office at 202-707-5627.

Geographic Information Systems Librarian, University of Texas at Arlington Libraries. Application deadline July 1st, 2002 or until filled. Submit applications to Julie S. Alexander, Assistant Director, UTA Libraries; Box 19497; Arlington, TX 76019-0497.

Head of Data Services, North Carolina State University Libraries. Relocation allowance. Position available July 1, 2002. Send cover letter (including title of position), resume, and the names, addresses, and telephone numbers of four current, professional references to: Joseph Hester, Office of Personnel Services; Box 7111, NCSU Libraries; Raleigh, NC 27695-7111.

Head Librarian, Engineering & Science Libraries, Massachusetts Institute of Technology. Applications deadline September 9, 2002. Send cover letter, resume, and names and addresses of three current references to: Search Committee for Head, Engineering & Science Libraries, The Libraries, Room 14S-324, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139-4307 Fax to 617-253-0583, E-mail rmdead@mit.edu.

Head of Government Documents and Maps, Arizona State University Library. For complete application information and requirements call: (480) 965-4914; or e-mail: karie.pifer@asu.edu. Deadline is July 31, 2002 or until filled.

Documents Librarian, University of Nebraska-Lincoln University Libraries. Application Deadline: August 15, 2002. Larry L. Kahle, Associate Dean, 318 Love Library, University of Nebraska-Lincoln, PO Box 884100, Lincoln, NE 68588-4100.

Government Information Resources and Maps, Southern Methodist University. See full position posting and ranking information at: http://www.smu.edu/cul/joblistings/ or submit résumé and cover letter to CUL Government Information and Maps Librarian Search Committee, P.O. Box 750135, Southern Methodist University, Dallas, TX 75275-0135. Deadline July 15, 2002.
Western Association of Map Libraries
Microform Publications

Occasional Papers

Information Bulletin

Microform Sets

First editions only. 1037 fiche. $300.00

Maps and Charts of North America and the Caribbean, 1750-1789. Phase I, Titles 3-1551. 335 fiche $110.00
Maps and Charts of North America and the Caribbean 1750-1789. Phase II, Titles 156-271. 380 fiche $125.00

[Poland] Wojskowy Instytut Geograficzny. 1:100,000. 193-. 53 fiche $500.00

Reichsamt fur Landesaufnahme. Karte des Deutschen Reiches. [Germany]. 1:100,000. Berlin, 186?-194? 4,100 fiche $1,500.00

Cassini & Carte de France, French Revolutionary Era Surveys. 214 fiche Out of Print

U.S. Navy Nautical Charts of Melasnea. 1917-1975. 251 fiche $100.00

Pacific Basin Map Exhibitions of the Library of Congress. 83 fiche $30.00

Bernice Bishop Museum Air Photos of Melanesia. ca. 64,000 photos on 70 reels of 35mm film $35/roll

Gazeteer to AMS 1:25,000 - Maps of West Germany. 3 vol. 1959, 1990 ed. 36 fiche. ISBN 0-939112-23-X $15.00

USGS GNIS Gazeteers:

California (17 fiche) ISBN 0-939112-21-3 $10.00

Nevada (5 fiche). ISBN 0-939112-22-1 $5.00

Send Check (payable to WAML) or Purchase Order to: Western Association of Map Libraries
Julie Hoff
WAML Book & Sales Manager
Map Collection
Arizona State Library
1700 West Washington
Phoenix, AZ 85007
Western Association of Map Libraries
Paper Publications

Occasional Papers

1973 *Catalogue of Sanborn Atlases at California State University, Northridge* by Gary W. Rees and Mary Hoeber. OP1. LC #73-5773 ISBN 0-939112-01-9 $4.00

1978 *Index to Early Twentieth-Century City Plans Appearing in Guidebooks: Baedeker, Muirhead-Blue Guides, Murray, I.J.G.R., etc., Plus Selected Other Works to Provide Worldwide Coverage of over 2,000 Plans to over 1,200 Communities, Found in 74 Guidebooks* by Harold M. Otness.

OP4. LC #78-15094 ISBN 0-939112-05-1 $6.00

OP5. LC #78-24066 ISBN 0-939112-06-X $4.00

1980 *Index to Nineteenth-Century City Plans Appearing in Guidebooks: Baedeker, Murray, Joanne, Black, Appleton, Meyer, Plus Selected Other Works to Provide Coverage of over 1,800 Plans to Nearly 600 Communities, Found in 164 Guidebooks* by Harold M. Otness.

OP7. LC #80-24483 ISBN 0-939112-08-6 $6.00

1981 *Printed Maps of Utah to 1900; An Annotated Cartobibliography* by Riley Moore Moffat.

OP8. LC #81459 ISBN 0-939112-09-4 $10.00

OP11. LC #83-26068 ISBN 0-939112-13-2 $15.00

1986 *Map Index to Topographic Quadrangles of the United States, 1882-1940* by Riley Moore Moffat.

OP10. LC #84-21984 ISBN 0-939112-12-4 $40.00

Send Check (payable to WAML) or Purchase Order to: Western Association of Map Libraries
Julie Hoff
WAML Book & Sales Manager
Map Collection
Arizona State Library
1700 West Washington
Phoenix, AZ 85007
(602) 542-4343