The Western Association of Map Libraries is an independent association of persons. The Membership has defined its Principal Region for meeting locations as: the Provinces of Alberta and British Columbia, and the States of Alaska, Arizona, California, Colorado, Hawaii, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington and Wyoming.

Membership in WAML is open to any individual interested in furthering the purpose of the Association, which is to encourage high standards in every phase of the organization and administration of map libraries. Membership includes receipt of all issues of the Information Bulletin and Electronic News & Notes (if an email address is provided), mail announcements of WAML meetings, voting privileges and receipt of WAML ballots.

Dues are US$30 per year and all memberships begin July 1. You may join any time of the year by sending your name, address, phone, fax, email address and US$30 to the WAML Treasurer at the address below. Make checks payable to WAML or the Western Association of Map Libraries. Lifetime membership is open to any individual for a one-time payment of US$500. In addition to all membership privileges listed above, Lifetime Members also receive a copy of each volume published in the WAML Occasional Paper Series. For more information about WAML, its purpose, meetings and membership, see the WAML Web site at http://www.waml.org or contact an officer listed below.

WAML and its Information Bulletin operate on a membership/volume-year basis. Subscriptions begin July 1 and end on June 30 the following year. Mid-year joiners/subscribers will receive back issues for that year. Back issues of the Information Bulletin are available for US$10/volume, or portion thereof, from the Subscription Manager at the address shown below.

Subscriptions to the Information Bulletin are US$25 per volume year. The Information Bulletin is issued three times each year: Issue #1 in November, Issue #2 in March, and Issue #3 in July. In addition to the subscription cost, US$3 is charged for postage to Canada and US$5 is charged for mailing to countries outside of the US and Canada.

WAML Executive Board (July 1, 2001 - June 30, 2002)

President
Christopher J.J. Thiry
Map Librarian
Arthur Lakes Library
Colorado School of Mines
PO Box 4029
Golden, CO 80401-0029
(303) 273-3697
Fax (303) 273-3199
eothy@mines.edu

Vice President/President Elect
Richard A. Spohn
Geology/Physics Librarian (Retired)
University of Cincinnati
225 Braumstein Hall
Cincinnati, OH
Phone (513) 556-1324
Fax (513) 556-1930

Treasurer
Muriel Strickland
2465 Baja Cerro Circle
San Diego, CA 92019
mstrickland@cs.com

Secretary
Wendie Helms
Map Collection, Science Library
University of California - Riverside
P.O. Box 5900
Riverside CA 92517-5900
(909) 787-6423
wendie.helms@ucr.edu

Past President
David Deckelbaum
Maps and Government Information
A4510 Young Research Library
Box 951575
Los Angeles, CA 90095-1575
(310) 825-1088
ddekelb@library.ucla.edu

Business Manager
Rich Soares
P.O. Box 3989
Chico, CA 95927-3989
Phone: (530) 898-6882
FAX: (240) 250-5514
wamlsobres@hotmail.com

Subscription Manager
Jim O Donnell
Geology Library 100-23
California Institute of Technology
Pasadena, CA 91125
wamlsubmgr@yahoo.com
Western Association of Map Libraries

Volume 33, No. 2

INFORMATION BULLETIN

March 2002

Table of Contents

Features and Photoessays

A Tribute to Ed Thatcher by Stanley D. Stevens ... 80
James Niehues Map Artist by James Niehues ... 82
Soil Maps and Soil Surveys by Sheri Schneider ... 86
Integrating Geospatial Information Activities: Enabling the National Spatial Data Infrastructure ... 91

Atlas and Book Reviews edited by Kathy Rankin .. 94

Books Reviewed: Sprawl Hits the Wall: Confronting the Realities of Metropolitan Los Angeles, reviewed by Greg Armento, The Geographical Imagination in America, reviewed by Ronald Whistance-Smith, Maps of the California Trail, reviewed by Muriel Strickland, Mapping Boston, reviewed by Carol Marley, Terrain Navigator: Colorado and New Mexico and TopoUSA, reviewed by Christopher J.J. Thiry, and AAAS Atlas of Population and Environment reviewed by Julia Gelfand.

New Mapping of Western North America compiled by Ken Rockwell ... 100

WAML Business

President's Message .. 79

News & Departments

Benchmarks ... 108
Canadian News .. 108
Cataloging News .. 109
Conferences & Classes .. 110
Digital Spatial Data ... 111
Employment .. 126
General News ... 112
Internet Resources .. 113
New Publications ... 116
Periodical Articles .. 119
US Federal, State and Local Government News ... 121

Printed in the U.S.A.

US ISSN 0049-7282 © 2000 by The Western Association of Map Libraries LC #72-625238
Editor's Message

Greetings to WAML Members and Subscribers —

There have been significant changes in my life since the last issue of the Information Bulletin was printed. As you know, I have relocated to Bloomington, Indiana, where I am now working as Head of the Geology Library. It has taken time for me to get settled into the new position. As a result, this issue is somewhat tardy. I apologize for the delay and hope to get the next issue out on time.

This issue contains the text of presentations by James Nichues and Sheri Schneider from the WAML meeting in Portland Oregon. It also includes an update on activities related to the National Map by Ron Matzner and John Moeller.

This will be my next to last issue as editor of the WAML Information Bulletin. Chris Thiry is working to find another editor. I may continue as production editor if needed. If you are interested, please step forward and volunteer.

Many thanks to all who continue to send news and information on new resources to our News & Notes Editor, Adonna Fleming, and I. The IB is a joint effort, and could not continue without everyone's contributions.

Linda
Linda Zellmer
lzellmer@indiana.edu
(812)855-7170

The Information Bulletin and WAML Electronic News & Notes are published by the Western Association of Map Libraries as tools for communicating with its Membership and Subscribers; however, opinions expressed in these publications do not necessarily reflect an official Association position.

CONTRIBUTION GUIDELINES FOR THE INFORMATION BULLETIN

Please submit material in electronic form. You may send material via e-mail as an attachment or regular mail (3.5" diskette, PC, Microsoft Word preferred). A file may also be posted on a server where the Editor may download it. Photographs should be black & white glossy prints or digital image files. Please contact the Editor if you have any questions. IB copy deadlines are: September 1 for Issue No. 1, January 1 for Issue No. 2, May 1 for Issue No. 3

FEATURE ARTICLES

Submit contributions and ideas for articles to the IB Editor, Linda Zellmer. These may include, but are not limited to, feature articles about maps and map librarianship, GIS and geospatial data use and services in libraries, mapping agencies, conference reports, historic mapping and future mapping trends, information about a specific map library or collection, map use or user studies, map librarianship training and cartobibliographies. “Something to Make Your Life Easier” features a procedure, handout, Web page or brochure to share that may help other map librarians in their work.

PHOTO ESSAYS

Contributions and ideas for photo essays are accepted by Ross Togashi, Photo Essay Editor.

REVIEWS

Atlas and book reviews and reviews of digital cartographic products, software and data are welcome. Contact the Atlas & Book Review Editor, Kathy Rankin or the Editor, Linda Zellmer. Hardware and Reproduction Technology reviews may be sent to the Micrographics/Technology Editor, Larry Cruse.
CONTRIBUTION GUIDELINES FOR WAML ELECTRONIC NEWS & NOTES

Submit items to the IB Editor, the News & Notes Editor or the appropriate State or Province Editor at any time for inclusion in the WAML Electronic News & Notes. E-N&N is a monthly publication that is compiled and posted on the WAML Web site at (http://www.waml.org). The E-N&N Editor appreciates receiving contributions via e-mail, but accepts regular mail as well. Please flag time-sensitive items in the subject line.

Back issues of WAML E-N&N are also available for viewing at the WAML Web site. Selected WAML E-N&N items also appear in the Information Bulletin.

E-N&N includes the regular feature “New Mapping of Western North America.” Submit citations for new print and digital maps and atlases of the western United States and Canadian Provinces to Ken Rockwell, New Mapping Editor and include ordering information if possible.

Contributions to E-N&N may include people news such as promotions, job changes, retirements and obituaries. Also, cartographic cataloging news, conference/class announcements, job announcements, industry/map dealer news, announcements of new cartographic materials (maps, atlases, data and software, CD-ROMs, URLs), citations for articles/special journal issues, preservation news, remote sensing news and agency news are welcomed.

Potential sources for news item include: communications with colleagues, listservs (please acknowledge original author and listserv), Web sites (use search engines & search for maps, atlases, cartography, geospatial data, GIS and your state, county or city), automated notification services, journals and newspapers, vendor, publisher and agency catalogs and newsletters and conference announcements.

STATE AND PROVINCE EDITORS

State and Province Editors will accept contributions at any time for their state or province and will forward them for publication. State and Province Editors have volunteered to be especially vigilant for news, notes, ideas for feature State and Province Editors will accept contributions at any time for their state or province and will forward them for publication.

Information Bulletin and Electronic News & Notes

EDITORIAL STAFF

Information Bulletin Editor
Linda Zellmer
Head, Geology Library
Indiana University Libraries
1001 East Tenth Street, Room 601
Bloomington, Indiana 47405-1405
(812) 855-7170
Fax (812) 855-6614
lzellmer@indiana.edu

Atlas & Book Review Editor
Katherine L. Rankin
3189 Brazos St.
Las Vegas, NV 89109-3204
(702) 895-3062
Fax (702) 895-1078
krankin@nevada.edu

New Mapping of Western North America Editor
Ken Rockwell
Marriott Library
University of Utah
Salt Lake City, UT 84103
krockwel@library.utah.edu

Electronic News & Notes Editor
Donna Fleming
Asst. Professor of Library Science
James A. Michener Library
University of Northern Colorado
Campus Box 48
Greeley, CO 80639
(970) 351-1530
Fax (970) 351-2540
aclemi@unco.edu

Photo Essay Editor
Ross Togashi
Map Collection
University of Hawaii Libraries
2550 The Mall
Honolulu, HI 96822
(808) 956-6199
Fax (808) 956-5968
rtogashi@hawaii.edu

Editorial Advisor and Micrographics/Technology Editor
Larry Cruse
University Library, C075P
UC San Diego
La Jolla, CA 92093-0175
(619) 534-1248
Fax (619) 534-7548
Larry_Cruse@UCSDLIBRARY.ucsd.edu
State and Provincial Editors

Alaska Editor
John Kawula
Government Documents & Map Librarian
Rasmuson Library
University of Alaska
Fairbanks, AK 99775-6800
fjjdk@uaf.edu

California Editor
Phil Hoehn
Librarian
David Rumsey Collection
51 Levan St.
San Francisco, CA 94114-1409
(415) 431-1423
philhoehn@juno.com

Nevada Editor
Linda Newman
DeLaMare Library/MS 262
University of Nevada
Reno, NV 89557
(775) 784-6945 ext. 20
Fax (775) 784-6949
lnewman@unr.edu

Alberta Editor
Ron Whistance-Smith
Map Collection, Geography Dept.
University of Alberta
Edmonton, Alberta T6G 2H4 Canada
rwhistant@compusmart.ab.ca

Colorado Editor
Christopher Thiry
Map Librarian
Arthur Lakes Library
Colorado School of Mines
Golden, CO 80401-1887
(303) 273-3697
Fax (303) 273-3199
cthiry@mines.edu

Oregon Editor - Vacant

Arizona Editor
Dale Steele
Research Division
Arizona Dept of Library, Archives
1700 W. Washington
Phoenix, AZ 85007
(602) 542-3701
Fax (602) 542-4400
dasteel@lib.az.us

Hawaii/Pacific Rim Editor
Riley Moffat
Division of Learning Resources
Brigham Young University
Box 1966
Laie, HI 96762
(808) 293-3850
Fax (808) 293-3877
moffatr@byuh.edu

Utah Editor - Vacant

British Columbia Editor
Tim Ross
Map Librarian
University of British Columbia Library
1956 Main Mall
Vancouver, BC V6T 1Z1
(604) 822-6191
Voice Mail (604) 822-2231
Fax (604) 822-3335
timross@unixg.ubc.ca

Idaho Editor - Vacant

Washington State Editor - Vacant

Wyoming Editor - Vacant

New Mexico Editor - Vacant
Lists for 2000/01 Membership Year
Committees and Representatives

Executive Board
President: David Deckelbaum
Vice President/President Elect: Christopher J.J. Thiry
Secretary: Wendie Helms
Treasurer: Muriel Strickland
Past President: Greg Armento

Appointees
Archivist - Julie Sweetkind, (2000-)
Business Manager - Richard Soares (1997-)
Subscription Manager - Jim O'Donnell, (1997-)
Web Manager – Linda Zellmer (1999-)

Membership/Hospitality Committee
Julie Hoff (1998-)
Cynthia Jahns (1998-)
Wendie Helms (1998-)

Nominating Committee
Greg Armento (2000-01)
Need additional members

Publications Advisory Committee
(PAC)
Phil Hoehn (1999-)
David Deckelbaum (1999-)

Ex Officio:
Linda Zellmer, *IB* Managing Editor (2000-)
Richard Soares (1998-)

PAC Microforms Subcommittee
Larry Cruse (1993-)

Representatives/Liaisons
To AACCCM - Mary Larsgaard (1992-)
To ACMLA - Tim Ross (1991-)
To ALA/MAGERT – Needs representative
To CCISA – Linda Zellmer (1999-)
To CUAC -
 Janet Collins (1996-);
 Christopher J.J. Thiry (1998-)
To GIS - Richard Spohn (1996-)
To IFLA - Barbara Haner (1989-)
To SLA/G&M - Muriel Strickland (1985-)

President’s Message

Greetings WAMLites!

I just returned from our very successful meeting in Santa Barbara, California. On behalf our organization, I again want to thank Mary Larsgaard, our host in Santa Barbara; she did a great job. Our speakers were interesting, the setting was lovely, and the banquet was yummy.

I am pleased to announce that Julie Hoff is our new Business Manager. It is a big job, and I know she will do great. I also want to thank Rich Soares for his years of service as Business Manager. He did a fantastic job (even though he kept misspeaking about the availability of the “last” WAML bags-I fell for that one once).

At our meeting Muriel Strickland, our Treasurer, reported that WAML is on sound financial footing. Our recent increase in subscription prices (the first in 10 years) has helped stabilize our accounts.

I look forward to seeing everyone at our 35th Anniversary meeting in sunny Hawaii. Surfs up!

—Chris
WAML President
A Tribute to Ed Thatcher

by

Stanley D. Stevens

In Memorium
Edward Thatcher

Editors Note:

In late November, several WAML members notified me of the death of Edward Thatcher, a founding member of the Western Association of Map Libraries. A memorial service was held for him on December 1, 2001. He was born Sept. 11, 1916, in Swarthmore, Pa., and was married Monette Hunkins in Ames, Iowa, on June 12, 1943. He received a bachelor's degree in Plant Ecology from Swarthmore College and master's degrees in botany and library science from the University of Minnesota. Edward Thatcher served in the civilian public service in Iowa during World War II, assisting with the research of food production and storage. He moved his family to Eugene in 1952 and worked as a science and map librarian at the University of Oregon until his retirement.

Ed spent several sabbaticals in Nigeria, New Zealand, Europe and the Eastern United States. His hobbies included the study of rare science books and the research of early publishers. He founded and was an honorary life member of the Western Association of Map Libraries. Thatcher enjoyed book collecting, gardening, fishing and natural history. He was a member of the Friends Meeting. Survivors include his wife; two sons, Carl of Portland and Jay of Corvallis; two daughters, Ellen Burt of Argenta, B.C., and Osa Thatcher of Johnson's Landing, B.C.; a sister, Edith DeBurlo; and nine grandchildren. Stan Stevens submitted the following tribute to Ed for publication.

A Tribute to Ed Thatcher

by

Stanley D. Stevens

Ed was considered the “Father of the Western Association of Map Libraries.” He was more instrumental in its initial founding than anyone else, although Sheila Doud at UCB hosted the initial meeting, which I attended. I got the initial green-light from Ed to proceed with formulating the organization; it was his claim that he wasn’t suited to it, nor to writing and producing the original Bulletin (later the Information Bulletin). Nevertheless, he was the inspiration for getting WAML started. I have always respected and admired Ed’s guiding principles for WAML: an independence from parent organizations, the personal contact between members through semi-annual meetings, an opportunity to learn from more experienced colleagues, the ability to develop a working relationship with a colleague who could be turned to when solving problems in the map room. Independence was a key to his inspiration. While he was a member of other organizations, and didn’t ignore their possible help in developing WAML, he urged that WAML should stand alone and develop its own organization with the ability to decide for itself how best to strengthen map librarianship as a profession.

The Initial meeting of WAML was at the University of California at Berkeley Map Room, November 12, 1966. Sheila Dowd, Carlos Hagen, and Ed Thatcher — were the real founders of WAML — they jointly sent the
invitation for the meeting. Our primary concern was that West Coast map librarians were being “left out” of the professional activities associated with the then only organization in existence: Special Libraries Association’s Geography & Map Division. That was not because the G & M Division was excluding us, but because it seemed oriented toward the East Coast, and most of the SLA meetings were being held in the East, South, and Midwest. At that initial meeting we had representatives present who informally advised us on what they thought were the advantages of affiliation with a larger organization. The Geoscience Information Society had just recently been formed. Ed Thatcher was a member and knew of its appeal to those in the earth sciences fields. And, of course, there were some present who had been members of the Special Libraries Association’s Geography & Map Division - or who had subscribed to its Bulletin for several years and were familiar with the organizational structure of SLA. A West Coast group could get together more often, so we decided we should try to provide the opportunity for independence and semi-annual meetings.

One of the most important needs that WAML was intended to serve is the social contact between persons with similar professional interests, thus enabling the exchange of ideas, sharing of problems, and learning from each other. Ed Thatcher was the first to stress that human interaction at WAML meeting could be one of our most important assets. For thirty-five years, WAML has provided an opportunity to join with colleagues throughout the West to fulfill mutual objectives: expand and strengthen map librarianship in the WAML region, and exchange information with colleagues by providing continuing education through meetings. WAML provided the opportunity for socialization with colleagues. Independence was, at least for WAML, thought to offer the best of all worlds. We didn’t want to be tied to anyone financially. We wanted the ability to make decisions independently, and we didn’t, of course, want to be tied to the meeting location or schedule of some parent organization.

Nor was Ed Thatcher an elitist. Other organizations in librarianship, at the time, required a degree in librarianship as a requirement for membership. Ed, on the other hand, believed that the only requirement should be “working in the field of map librarianship.” This openness was characteristic of Ed Thatcher, and it is one of the guiding attributes that gives the Western Association of Map Libraries its strength today. Ed Thatcher will always be remembered for his humanity, his inspiration and his foresight, and the profession of Map Librarianship can justly claim him as one of its Pioneers. He will be missed.
James Niehues
Map Artist

by

James Niehues

In 1988, I looked up Bill Brown, an illustrator who had doing perspective drawings for 10 years or so. Both he and Hal Shelton, another landscape artist, lived in Denver, Colorado. I had admired Bill's work for quite a while, and wanted to find out how to get into this line of work. At the time, I had been working at print shops and doing jobs as an art director. Prior to that, I had quit a partnership with a successful agency in Grand Junction, Colorado.

My timing happened to be just about right, because Bill Brown had decided that he wanted to get out of the business of landscape drawing and into video. He liked the work that I showed him. At the time, he had a commission from a client, Winter Park Ski Area in Colorado, who wanted him to do a painting of the ski area. Since he hadn't started on that job yet, he offered it to me, figuring that he had time to do the work if mine didn't work out. I accepted the offer and spent a lot of time on the project, because the medium, opaque watercolor, was unfamiliar to me as it was not one that I had practiced. I spent about 3 weeks working on the painting; when I was done, I took it to Bill Brown unsigned. Bill took it to Winter Park as though he had done the work; in fact they thought that he had. All went well, as the picture was accepted. Bill brought it back to me so that I could sign it and essentially launched me on my new career.

At the same time, a new magazine, Snow Country Magazine, was just beginning to be published. It catered to the ski industry, in particular the resorts. Instead of selling equipment, such as skis, boots and clothes, it concentrated on the real estate and resorts. They wanted Bill Brown to do a full-page spread showing a ski area every month. He gave them my name and they offered me the job. The opportunity worked out very well because I instantly had national recognition. Each month, I was doing a full-page illustration in a magazine that directly reached my audience. As a result, I became quite busy for the first 5-10 years, and would even have to turn down some work.

You have to understand that the ski industry wants work done at a certain time of the year. In April they start placing orders for work that they want done before the next ski season (September or October). So the period between spring and fall are usually quite busy. On average, I generally do about 17 jobs a year. When the winter months come along, things open up; then I have the time and opportunity to pursue work for visitor bureaus, do regional illustrations, such as the 5 national parks that I have done, and trail maps. My latest work is of Wildcat Ski Area on the far side of Mount Washington in New Hampshire.

To get started on an area, I look at topographic maps, and then go out and fly over the area, taking as many as 10 rolls of color print film. I spend about a week getting to know the area from the ground and the air. I like to travel around each area and experience the awesomeness, color and feel of the region. I start the drawing process by looking at all of the pictures that I have taken, picking out distinct
features, such as lakes, streams and mountains and determining their relationship to each other until I know the area. Once I know the area I begin the painting; I may never refer back to the photographs again. I start each painting with a sketch on vellum, which may take a few days or up to 5 weeks. The sketch, which can be reproduced using a blueprint process, is then marked up and approved by the client. I then start the painting. Using an airbrush technique, I put in the sky and all of the blues. After the airbrushing, I work in the highlights, such as the edges of the trails and the whites. I then put in the shadows, such as the shadows of the trees and add things like the rocks, highways and parking lots. Finally I put in all of the trees, including the deciduous and conifers. Each conifer consists of three colors, the main tree, the highlights and shadows. In the case of deciduous trees, I also put in all of the branches. The completed painting includes final details, such as cars. A painting of a ski area can take up to a week, while a regional may require 3 weeks.

As November approaches, I begin looking for other work to do. This is the real exciting time of my year. I may pick up jobs for regional paintings needed for summer. I may only get 1 or 2 commissions a winter, although I have recently been fortunate, as I have picked up as many as 3 or 4. Some examples of my work include Cottonwood Canyon and Zion in Utah, Yellowstone, Yosemite, the Wasatch, the list is endless (Figure 1). One of the reasons people hire me to do these paintings is that they instantly show people what is there. They are especially useful for tourist brochures, as people can see the terrain and vegetation. In some cases, I do a painting without a buyer, on speculation. I then may show it around until I have a buyer. That was the case with a painting that I did of Rocky Mountain National Park; it sat around for 2 years until someone called me with a commission. I was able to say that I had something that might work; it turns out that it did work out quite well. Right now, I have a painting of the Columbia River Valley which is looking for a buyer (Figure 2).

Recently I had a project that I really enjoyed, a painting of Turtle Island, a
resort island near Fiji in the South Pacific (Figure 3). Those white beaches are a lot nicer than the white snow at my age. My work has taken me all over the World, including Chile, Canada, Australia, New Zealand, Japan and even Korea.

I generally work in a standard size, 30 x 40 inches. If it is a picture of a small area, I reduce the size because I am used to working at a particular scale. A lot of these illustrations can be enlarged to 4 x 8 feet without suffering any loss of detail. I supply a scanned image of each painting on a CD-ROM. The clients add things like trails and lettering digitally. When a ski area puts in a new run, they may make changes digitally in Photoshop. After a few years of changes or a major change, I am invited back to do a new painting, because the field is a small one and not many people are doing this kind of work. At one time, fearing a fire or some other catastrophe, I shipped a lot of the paintings to my clients. However 2 of these have since been lost, and one has suffered water damage. Since then, I have retained all of the paintings.

About the Author. James Niehues is a landscape artist who lives in Vancouver, Washington. Samples of his work can be viewed on his web site: http://www.map-artist.com/.

Figure 2. A view of the Columbia Gorge from the Northwest. It includes most of the major waterfalls in the Gorge.
Figure 3. Turtle Island, near Fiji in the South Pacific.
Soil Maps and Soil Surveys

by

Sheri Schneider

The Natural Resources Conservation Service (NRCS) is a Federal agency in the U.S. Department of Agriculture (USDA). NRCS is a relatively small agency, with 11,000 employees spread out among the 2500 field offices located in almost every county in the United States. Compare this with the Forest Service, which has over 45,000 employees in the United States. My responsibility there is the take the information gathered by soil scientists and process it so that we can send it off to our office in Fort Worth, Texas, where they produce negatives used to print Soil Surveys. Our office in Portland, Oregon processes information from soil scientists in Oregon, Washington and Idaho, but because our workload may vary, we may also work on soil surveys of other states, such as New York, Massachusetts or Virginia.

The Natural Resources Conservation Service has a wide variety of responsibilities. We are involved in farmland protection, and help farmers and ranchers plant grasses and trees to control soil erosion. We also work in forestry, wetland enhancement, and protection of watersheds, riparian areas, and wildlife habitat. Unlike the Forest Service and other related agencies, we only work with private landowners. NRCS also does snow surveys and water supply forecasting, work that is very important in the West because snow melt is a primary source of irrigation water. NRCS snow surveys provided early warnings about the recent problems that occurred in the Klamath Basin.

History of Soil Surveys

The USDA was established in 1865; the Division of Agricultural Soils was established as an agency within the USDA in 1894. The first formal soil survey program began in 1899. The primary purpose of that program was to map tobacco lands, because at the time it was a valuable cash crop. In 1935, the agency was renamed as the Soil Conservation Service and remained that until 1994, when our name was changed to the Natural Resource Conservation Service to better reflect the breadth of our responsibilities. A lot of the agency’s emphasis has been on soil erosion. We became really active in the 1930s during the Dust Bowl era (Figure 1). An early soil scientist, Hugh Hammond Bennett, became extremely concerned about the ability of our nation to feed itself, given the amount of soil erosion occurring at the time.

Bennett was a politically savvy soil scientist who worked very hard to bring this to the attention of Congress and other interested people. In the course of doing so, he was able to define the agency’s goals. Our primary focus has been and continues to be reducing soil erosion by working with farmers and ranchers.

Accurate soil maps are critical to controlling soil erosion. Different soil types erode at extremely different rates. An early soil scientist, Macy H. Lapham, described the challenges of soil mapping in the early 1900s:

“After a hearty breakfast, attired in old clothes, stout shoes and canvas leggings, I was ready for the field. With two frisky Western horses and a light ambulance-like canvas covered wagon, we stopped in a vividly green alfalfa field on a red alluvial soil. Here I was shown how to handle a 6-foot auger and to note the character of the fine sandy loam soil, the boundaries of which were sketched on the pages of a notebook. Soil boundaries were determined by noting differences in texture, color, structure and mineral character by means of frequent borings or in the
absence of suitable base maps, sketching into pages of the blank township plat book, ruled off into sections. Bearings were determined by compass, courses were plotted by protractor and scale.”

It is interesting to see that this is where we started, because a lot of the same tools are still being used to map soils today, although they have been refined and improved. Some addition comments from Lapham: “Transportation in the field was by hired horse and buggy. At times this was supplemented by a saddle horse.” He also wrote about his early experiments with the automobile as a mode of transportation for soil scientists:

“The auto is making its bid as a practical means of transport. I foolishly became infected with the ambition to substitute one for the old, slow-moving horse-drawn vehicle, and engaged in an abortive attempt to introduce autos to soil survey. This consisted of a narrow gauge vehicle powered by a single cylinder, air cooled, motor mounted on the rear. Chain and sprocket connected it to the rear axle. When started with a crank, usually at the expense of blisters, it made a terrible clatter and would maintain a speed of 15 to 20 miles on smooth, oiled roads, of which there were few. I believe this was the first instance in which any form of auto transportation was used in soil survey. Invention is, however, the mother of necessity, and we soon returned to the slower and more dependable horse and buggy.”

During Macy Lapham’s time, there were no soil scientists with previous training and no place in the country, or elsewhere, in which training in soil conservation and mapping might be learned. A very small group of people (only 10 were mapping soils in 1899) basically got together and attempted the task of figuring out how to map soils. A lot of the early methods, noting color, texture and mineral content, are still used today, although our understanding of it has improved over time.

Soil Surveys

Soil surveys consist primarily of maps, although they also include text and tables to explain what is on the map and provide data. There are 285 soil survey reports that are currently in print out of about 3500 soil survey areas. A Soil Survey status map is available at http://www.statlab.iastate.edu/soils/soildiv/sslists/sslisthome.html. These areas typically follow county boundaries, although this is not always the case. About 600 areas are currently being updated. Even though a soil survey for an area has been published, because our understanding of soils has improved over time, the information in a published soil survey, while not incorrect, may not provide the detail that can be produced today. New soil surveys are needed because of changing land use and the need for

Figure 1. Soil erosion during a dust storm in the 1930s.
large scale, more detailed information. There is also a need to collect additional data to allow for changing interpretations. Therefore, the Natural Resources Conservation Service updates soil surveys periodically by reexamining areas which have previously been mapped. Nationwide about 1000 soil scientists are doing that work.

Soils are the foundation of all terrestrial life; just about everything we build on, eat or use in our society can be traced to the soil. Soil is the dynamic interface between the atmosphere and the earth’s crust. It is important to understand this part of the environment, our effects on it, and the choices we make about it as a society. One of the most critical aspects of soil is that it filters and stores water, which we all need. With the concern about the degradation of water quality, the importance of soil as a filter is increasing. Soil is a medium for plant growth, is the ultimate recycling bin and serves as a home for many life forms, some of which are not completely understood. Soils differ because of climate, parent material, soil organisms, relief or topography and time (age of the soil). It takes about 500 years to form 1 inch of soil. Barring outside influences, older soils will be thicker and deeper than younger soils.

Soil survey reports are comprehensive inventories of the soils of an area; they describe the soil resources in exhaustive detail. Soil Surveys contain soil maps that delineate the areas occupied by different soils. They also contain a tremendous amount of tabular data that gives information on specific soil properties and interpretations on whether a soil is suitable for a given use, such as a septic tank field. Soil data is used for many applications, including placing roads, establishing parks and planning runoff controls and land use. People in both rural and urban areas use soil surveys.

Producing a soil survey is a four-step process. The first step is the actual mapping activity done by soil scientists out in the field. Their information is then compiled and then digitized, which converts it into a digital product that can be used with a computer. The final step is map finishing, taking the digital information and creating a report that can be sent to a publisher to be printed, producing a hard copy.

Soil scientists usually have a photo base of their work area that they take into the field. On this they draw concept lines, which delineate a soil based on its color and texture (Figure 2). They may also do transects or send samples off for lab analysis. A soil scientist may spend 5 to 7 years mapping an average-sized county. Usually soil scientists do field work in the summer and compile their data in the winter. To compile their data, they transfer their concept lines to Mylar in ink. These final lines may be combined with other information, such as the location of streams. The Mylars are then scanned, processed,
edited, attributed and converted into a digital file that can be used in a variety of GIS programs. The final data is reviewed and certified before it is sent to be converted into a finished map.

The process of producing a soil survey is quite long. NRCS is trying to find a way to streamline the work needed to produce a finished map. One way may be for soil scientists to collect data digitally in the field, eliminating the multi-step process of transferring and digitizing data to produce a final product. These surveys would still be reviewed and certified before being sent for map finishing.

Map finishing creates a publication-ready negative, and combines the soil lines, contour lines, symbols and other text onto an orthophotoquad, which is used as a base. This process used to be done by hand using three layers, a scribe coat, which was used to show lines, a stick-up layer, which was used to place text, and a photo background. This work was very time-consuming and hard to correct if mistakes were made. These 3 pieces were then combined and photographed, producing a negative that was sent to the printer.

For the last two years, all of this work has been done using computers. While it has taken NRCS a long time to join the computer age, the process of soil map preparation is much faster and they are easier to correct. Digital data can also be used to produce multiple products.

The Portland, Oregon NRCS office is one of 6 sites in the country creating soil maps; the other offices are in Nevada, Illinois, Missouri, Montana and Tennessee. We have task-specific software that we use with ArcInfo on high-end computers, an extensive network, and a terabyte of storage. The software allows us to quickly change fonts, font size and text placement. USGS Digital Raster Graphics are used as a base and guide for placement of geographic names. Quality control, reviewing maps for errors, is still a manual, albeit critical, process. Once reviewed, postscript files are prepared and sent to the NRCS office in Fort Worth, Texas. This file is used to print a negative from an AGFA image setter. The negatives are sent to a printer who prepares the final product.

Traditionally, soil surveys were compiled into books with a perfect binding. Orthophotoads were cut into three parts and printed front to back. This was a challenge for people who found that their area might be on the edge of two or more maps. NRCS is now producing soil surveys with full-sized maps in a loose-leaf report, which is a more useful format for our customers. The digital product allows NRCS to print fewer reports. Instead of having to warehouse reports, we are now able to print a single report multiple times over the 30-year life span of the survey.

NRCS is also introducing new products, such as soil surveys on CD-

Figure 3. Adding attributes to a soil survey on a computer.
ROM (Figure 4) and the World Wide Web (see http://www.statlab.iastate.edu/soils/soildiv/surveys/onlineman.html for links to online soil surveys). Generally, the digital soil surveys include the printed materials found in most soil survey reports and maps as tiff image files. ArcInfo coverages for surveys that have been reviewed and certified can be downloaded from the Soil Survey Geographic (SSURGO) ftp site (http://www.fs.nrcs.usda.gov/ssur_data.html). Unlike the printed reports, there are presently no standards for soil survey CD-ROM products. They are so new that they vary by state; some states have digital soil surveys while others do not. Even the content differs by state. One challenge in the Western U.S. is that the image files are extremely large because the area of interest, usually a county, is much larger, so a single soil survey may not fit on one CD-ROM.

This problem is still unresolved. The web products do have advantages. Customers and employees have access to the same official data set. Because soil surveys are continually updated, the old versions must be replaced with more current ones. By delivering soil surveys on the web, the data will always be current. It also allows use of large data sets and eliminates the need for distribution of print and digital products. However, people with slow Internet connections may have problems with these large data sets. NRCS also has plans to scan out-of-print soil surveys that will not be reprinted, so that they will be available to potential users. Producing soil surveys in multiple formats allows for a variety of uses. This does not mean the end of the printed soil survey. For the foreseeable future, printed soil surveys will continue to be produced and distributed.

About the Author

Sheri Schneider is a Soil Scientist and GIS Information System Specialist on the Major Land Resources Office regional team for the Natural Resources Conservation Service in Portland, Oregon. She can be reached at Sheri.Schneider@or.usda.gov.
Integrating Geospatial Information Activities

Enabling the National Spatial Data Infrastructure

by

Ronald F. Matzner and John Moeller

Executive Summary

The Administration is embarking upon an ambitious effort to complete essential elements of the National Spatial Data Infrastructure (NSDI). Geospatial One-Stop is a Presidential Initiative to accelerate the implementation of the essential building blocks of the NSDI over the next 18-24 months. Implementation teams (I-Teams), Federal Partners and other partnerships address the institutional barriers to collaboration, and support the objectives of Geospatial One-Stop. The Office of Management and Budget, through a variety of efforts, is addressing needs for increased leveraging of geospatial information and technology investments. Major Agency program initiatives, such as Census Modernization, the National Map, the National Integrated Land System, FEMA's Multi-Hazard Mapping and others are promoting new strategies for multi-party data development that contribute to the NSDI. Data produced in compliance with NSDI policies, practices and standards becomes part of the common infrastructure and increases the value of America's data activities to implement the NSDI and sustain geospatial information resources for the benefit of the Nation.

The Vision

Geographic information (GI) is a national asset, an essential requirement for just about every program at every level of government, and one of the key elements underlying the President's Management Reform Agenda.

Using the available tools and technical capabilities of E-government, we can expedite and improve the business of government, reform government management, eliminate redundancy, save money, increase agency productivity gains from technology, and provide citizen-centered information and services. Geospatial information is one of our most important and underutilized tools. To implement the President's e-government objectives, we need to focus on geospatial information.

Achieving a common vision of accurate, accessible geospatial information for the nation that will transform the way government at all levels addresses the increasingly complex issues of the 21st century by using geographic information to:

- Simplify and unify business processes.
- Respond to the information needs of citizens, producers and users of GI everywhere.
- Integrate and engage the coordinated effort of government at all levels, and the private sector
- Align resources and foster co-investment in GI among all levels of government
- Collect data once and use it many times
• Provide easy and secure access 24/7 to current, accurate GI
• Enable timely and improved decision making for everything from Homeland Security to economic development to health and public safety

There are many geospatial community assets to draw on:
• Dynamic technology created by the spatial technology industry
• Public and private sector organizations in many cities, counties and states, as well as Tribal and Federal organizations that have adopted GI in their business processes
• A wealth of spatial data produced at every level of government and other sectors
• Interoperability specifications so GI technologies work together
• Long-term relationships and partnerships among Federal agencies, state and local governments, and the private sector

Geospatial One-Stop

Geospatial Information One-Stop is part of the President’s Management Agenda item called expanding e-Government. It focuses on moving to a citizen-centered way of providing information and services to constituents. Geospatial Information One-Stop will provide a geographic component for use in all e-Government activities.

Geospatial One-Stop will build upon existing capabilities and accelerate the implementation of the NSDI and complete a number of essential elements of the NSDI within 18-24 months:
• Inventory, document and publish existing Framework datasets of Federal Agencies
• Publish planned Federal data collection and maintenance activities
• Develop data content standards and data models for Framework
• Develop interoperability tools and web feature services as an extension of the NSDI Clearinghouse Network
• Develop one-stop portal

Other OMB and FGDC Initiatives and Activities

Other Federal Initiatives address the institutional and financial barriers, and support and help implement Geospatial One-Stop.

Federal, State and Local Agency Initiatives and Activities

Across governments and businesses, there are many programs, projects and activities that produce or use geospatial data either as a main responsibility or as a by-product of mission work. A robust and dynamic NSDI will include all of these geospatial data resources and will enable data to be found, accessed and used efficiently and effectively. There are many implementation actions taking place. While the Federal Geographic Data Committee is a leader for federal coordination, successful implementation will be achieved by the actions of many individuals and organizations from all levels of government and all sectors.

Federal initiatives such as the Census Bureau’s MAF/TIGER Modernization, USGS’ National Map, BLM’s...
National Integrated Land System, and FEMA’s Multi-Hazard Mapping, and a myriad of other Federal programs and projects that depend upon spatial data, help implement the NSDI and sustain geospatial information for the Nation. Each program has a mission responsibility. Each can fulfill its mission and help other programs and agencies at all levels of government to fulfill theirs by synchronizing efforts, simplifying processes, and otherwise following NSDI practices. In so doing, the Agency’s efforts add to the Nation’s common geospatial data infrastructure and resources.

About the Authors

Ron Matzner is Coordinator of the Office of Management and Budget Geospatial Initiatives program. His e-mail is rmatzner@fgdc.gov.

John Moeller is Staff Director of the Federal Geographic Data Committee. He can be reached via e-mail at: jmoeller@fgdc.gov.

Tying it All Together

Consistent implementation of common NSDI practices and full engagement by all Agencies at all levels of government will enable the Federal government to coordinate efforts with state and local governments, continue to develop best practices and standards and co-invest and align resources for mutual benefit. Together with Geospatial One-Stop, these actions constitute an integrated approach to implement the NSDI and enable geospatial information for the Nation. Whether engaged in a specific major geospatial data initiative or one of the many other programs that use or generate geospatial data, Federal activities produce geographic information that is valuable for the nation. *Consistent implementation of the common practices and standards developed for the NSDI and active participation by all Agencies will enable us to link programs, practices, information and services in a citizen-centered geospatial delivery system for the nation.*
Reviews of Atlases, Books and Digital Resources

edited by

Kathy Rankin

University of Nevada, Las Vegas

Sprawl Hits the Wall: Confronting the Realities of Metropolitan Los Angeles. (Atlas of Southern California, vol. 4). Los Angeles, Calif.: Southern California Studies Center, University of Southern California, 2001. 57 p. (Full text with color with black and white images available at: http://sc2.usc.edu/sg/atlas3.html.)

This 4th volume of the loosely titled series *Atlas of Southern California* was developed by a team of distinguished professors from several prominent Southern California universities. While one can order a physical copy of this study, it is also available full text and in color from the link above. As was the case with the previous three volumes of the series, this volume also has the look of a corporate annual report. (See review *Atlas of Southern California, vol. 1 & 2* in Information Bulletin 30:2 & 3 p. 142-143; and *Atlas of Southern California, vol. 3* in Information Bulletin vol. 31:3, p. 213-214). Its clever title *Sprawl Hits the Wall* succinctly summarizes the nature of the report. The five-county Southern California region, (the report excludes San Diego and Imperial Counties in the extreme south and Santa Barbara County) with its population of nearly 16 million people has run out of developable land. Urban growth has hit a literal wall of rugged mountains, federally protected lands, fragile deserts and ocean. With the pressure of continued births and in-migration, there is nowhere to grow but smarter. The second major element in the report is the troubling socioeconomic gap between ethnic groups compounded by ethnic separation. Generally, white, wealthier groups live on the urban fringes: coastal areas, outer valley hill communities and mountainsides while poorer ethnic enclaves populate older flatland neighborhoods or less expensive urban desert fringes. Essentially, the five county Southern California Region is becoming stressed out, environmentally and socioeconomically, and it is vital that we pull together and plan together for our future. This report lays out what the trends are in vivid detail and alerts community leaders, planners and policy makers of the need to (paraphrase) “grow civic minded, together, greener and smarter.”

The printed report contains many colored pie charts, graphs and histograms. The numerous colored choro-pleth maps of the five-county area (or sometimes the entire Southern California region) depict socioeconomic patterns or environmental trends. Most maps are about 7” x 5”. The advantage of the web site is that the maps and other imaged data can be made much larger than the original. The work is roughly 5% graphs, 15% maps and charts and illustrations and 80% text.

While I would not necessarily recommend it for map collections, it would be a good addition (or website link) to library collections focusing on urban planning, or with a geographic interest Southern California.

Greg Armento
Map and Geography Librarian
California State University, Long Beach

“In an article in the May-June 2001 issue of Mercator’s World entitled “Where should map history end”, Mark Monmonier laments the shortage of scholars focusing on the history of cartography in the twentieth century.” (The History of Cartography, *Newsletter* 2001: Summer)

Susan Schulten is one author who is engaged in this area of research.
In this volume she addresses the way in which cartographic production in the United States between 1880 and 1950 influenced and informed world views of its citizens, promoted national interests, and was in turn changed by public and government response to new world views as expressed in the work of John Paul Goode, Richard Edes Harrison, and the National Geographic Society.

Along the way we are treated to a quite cogent history of the National Geographic Society, the reasons for the creation of the Association of American Geographers (AAG) and the American Society for Professional Geographers (ASPG) and the subsequent merger of the two; the adoption of the wax engraving technique of map production and its role in the creation and success of three major American map companies (Rand McNally, George F. Cram, and Hammond); the final abandonment of that process; and other aspects of a complex and diverse industry. Another interesting aspect of this book is the shift in focus from political, to physical, to commercial (resource and trade) maps and geographies as reflecting first, the interest in showing as many place names as possible, then the landscape in which people dwell, and then, as related to a growing empire acquired through war, the resources and trade possibilities of new territories, and the opportunities for raising the development levels of the peoples of these lands.

The author has provided answers to questions this reviewer had as he surveyed the titles and contents of a collection of American and Canadian geography texts and atlases amassed through the years with an eye to how geography has been taught. She has also raised new questions. Based on very extensive research over a period of some years, each chapter has extensive footnotes, and often these contain real gems of information. The "Select Bibliography" includes manuscript collections consulted, interviews with authors of other works, atlases and maps consulted (arranged by company or author), about 24 pages of books and articles, and the work is well indexed.

If your map library collects books related to the history of cartography, this is a worthy addition. It is also a must-read for those engaged in graduate studies in geography. Map librarians will find it gives a new perspective both on the look of maps in their collections, what to look for in certain time periods, and why these items were produced. An added perk is information, which informs us as to why certain maps turn up so frequently while other topics seem almost impossible to find for a given period of time.

Ronald Whistance-Smith
Curator Emeritus
William C. Wonders Map Collection
University of Alberta, Edmonton

More than two hundred and fifty black-and-white page-sized reproductions of sections of US Geological Survey 1:100,000 Topographic Series maps are annotated and linked to cover terrain from Iowa to California, thus allowing the reader to follow the complexities of the linear network known as the California Trail from east to west.

Primarily, this book is aimed at the individual explorer/traveler interested in experiencing actual localities along the trail, as they remain today. For such persons there are introductory sections outlining the history of the California Trail and explaining the maps used: travel caveats are spelled out. There is a good index of the places involved, including those sites added to the basic maps. This audience is now on its own.

However, as a map library reference-tool, what is available/valuable in this most detailed publication? How can it be used as an information bridge between generalized trail overviews and localized specifics?

First and foremost the author and the compilers, too numerous to name, have managed to bring together a wealth of historical information and relate it to current topographic mapping at a realistic scale. The information displayed would seem to be complete enough to satisfy most queries about the spatial elements of the trail: numerous quotes from contemporary diaries and accounts augment the pages.

Given these positives, what are the negatives and what might be done about them? Unfortunately, of necessity, the maps are black-and-white reproductions of originals designed to rely considerably on color to distinguish roads from other features, such as rivers, boundaries and contours. Thus they often offer a confusing maze of lines. The broad line of the trail is clear and its route can be easily distinguished; the 1:100,000 sheets are identified. So, as is suggested in the introductory material, using the original colored map in conjunction with the trail section can make the whole thing clearer.

Next problem: when following a long stretch of trail, just exactly where are we? The maps are linked but can cover only a few miles of the surrounding country; often it is still remote and unpopulated. A standard
road map provides no help. The 1:100,000 sheet is identified, but an in-between scale is really what is needed. Moreover, rather than latitude and longitude, the appropriate Township and Range system is used but this is not necessarily a bad identification method. So, using a map with a clear Township/Range grid, say a USGS 1:500,000 state map, location is simple and can be related to latitude and longitude. There is no identification of the particular meridian in use at any time, however much of the route is covered by the 6th Principal Meridian and the Mount Diablo Meridian. Only when systems interlock at state boundaries is there any significant confusion.

Following this, do you want to plan an actual visit to an unmarked and remote site? A large-format state road atlas, which gives latitude and longitude, such as those published by DeLorme and Benchmark, should get you close.

Muriel Strickland
San Diego Historical Society

Mapping Boston is several books in one, first a collection of essays, then a series of illustrated vignettes accessible to a general audience, linked to plates of important maps, which are accompanied by technical descriptions. In his introduction, Alex Krieger points out that while many books have been written about maps and many more about cities, few have attempted to explore the “connections between specific maps of the city, the places the maps delineate, and events or people important to the evolution of those places”. Each chapter can be read independently, but making the connections between maps and narratives is one of the most satisfying features of the book.

Urban historian Sam Boss Warner Jr. is responsible for the first section of the book. He traces the social, political and economic development of Boston, creating the foundation on which the other sections are built. In the second section, leading librarians/map historians Barbara McCorkle, David Bosse and David Cobb focus on the mapping and mapmaking of New England and Boston, from the Age of Discovery to the end of the nineteenth century. While these chapters are uniformly informative, Bosse’s chapter is notable for its use of sources such as sales and auction catalogs, letters of prominent Bostonians and estate records to distinguish the evolution of the mapmaking trade from that of the book trade. One example is his analysis of Philip Freeman’s broadside of September 30, 1766, which shows that while books represent three-quarters of the inventory, the rest is devoted to maps, prints, globes and optical and surveying instruments. The chapter documents the beginnings of Boston’s ascendency in American chart making and the transformation of Boston from colonial publisher to American publisher.

The third section of the book focuses on the physical evolution of Boston, using maps as a primary source of data about the changing city. Nancy Seasholes, a historical archaeologist, provides an overview of the topographic changes that have enabled Boston to quadruple its original landmass. This is a fascinating chapter chronicling the sheer magnitude of changes in the land, the emergence of what is now central Boston, from mudflats and marshes. The maps, arranged chronologically to document this remarkable transformation, are an indispensable part of the story. Closely tied to Seasholes’ chapter is that of architect and urban planner, Alex Krieger, on Boston’s neighborhoods and the city’s spatial character.

Completing the second and third sections is a series of plates featuring maps of New England and Boston. David Cobb and Nancy Seasholes were responsible for the map descriptions. Opposite each is a vignette about the map, or about a person or event from the era when the map was created.

There are a number of indispensable appendices, e.g. a timeline of Boston’s land making, a chronology of Boston, a glossary of map terms, suggestions for further reading, an index of the maps which are illustrated, brief information about contributing authors, illustration credits and an index. In perusing the illustration credits, the role of map collector Norman Leventhal becomes apparent. This is further confirmed by the publishers who acknowledge Leventhal’s financial support, and equally his love of maps and interest in education, which led to the conception of the project. “In the sense of source and originator, then, Norman Leventhal can be said to be the author of this book.”

Mapping Boston is profusely illustrated; of the 270 illustrations, 160 are in color. In addition to maps there are vintage photographs documenting city design and specific construction sites, bird’s-eye views, aerial photographs showing changes in land patterns over time and paintings of Boston scenes and personages. The high quality illustrations contribute to the graphic excellence of the book, something we have come to expect, nonetheless to appreciate, from the MIT Press.
The book is a steal at $50 US for a cloth copy. Others have come to the same conclusion as evidenced by this second printing, following so quickly upon the original. It is highly recommended for university, public and special libraries and for anyone who wants to know more about maps and urban history. This is a book to return to, to savor. It is the authors’ hope that it will inspire further research, resulting in a more comprehensive cartobibliography and a historical atlas of Boston. Perhaps Bosse’s approach to the mapmaking and publishing industries in Boston will be extended to other regions. Finally, the authors hope that other projects will follow, using maps and mapmaking as a vehicle for educating people about their environment—local, regional and global.

Carol Marley
Information Services Librarian & Bibliographer
Hitchfield Geographic Information Centre
McGill University, Montreal

I examined both products simultaneously because they are similar in nature. I found it difficult to review these items because many features were not obvious. Even though I spent a couple of hours using both products, it is very likely that I did not explore the extensive capabilities of either. I am certain that while I name a feature that is available in only one product, the feature may be, in fact, available on both.

Both products are useful in their own right. Both:

- Come with a useful instruction book.
- Are easy to move around in.
- Allow the user to search for feature names.
- Show 3-D versions of terrain with the ability to rotate and tilt the image, but neither allows the user to scroll in 3-D mode.
- Have information embedded in the maps, such as place names, elevations.
- Have features that can be turned off and on—shading, grid lines.
- Allow the user to draw routes, then see a profile of those routes.
- Print reasonable good quality maps.
- Consist of multiple CD-ROMs; because of this, it can be cumbersome to switch CDs or look at maps that overlap 2 CDs.

For more extensive research and route planning, I can recommend *Terrain Navigator*, despite its price. For the casual user, this program may be too expensive. It uses the USGS 7.5' topos as its base, which for the experienced map user, makes it far more intuitive. In addition to the 7.5' topos, the disks contain scanned copies of the 1:100,000 USGS topos. It is possible to toggle between them with a simple click. The user can toggle quickly between 1:4, 1:2, 1:1 and 2:1 views of the maps; however, a click on an icon is required to do this—there is no manual zoom. Different from *Topo USA*, *Terrain Navigator* allows the user to see the topo and 3-D versions of the same map at the same time. It is easy to toggle between a normal view and a 3-D view. Moving north-south is fast, but scrolling east-west is slow. No matter what function is used, the display boxes give constant latitude, longitude and elevation. The elevations are given in one foot measurements, but it is unclear how accurate these are for USGS usually shows the elevation differences in 40 foot contour levels. The elevation can be set in feet or meters. Latitude and longitude can be displayed in degrees-minutes-seconds, decimal degrees, UTM, MGRS, or decimal degrees in minutes. The datum can be switched between NAD 27, NAD 83, and WGS 84. One can switch between true and magnetic north, but I did not see a difference in display or use. The information button gives data on the CD’s name, quad name, USGS map number, scale, map type (feet or meters), vertical datum date, horizonal datum date, contour interval, year map created, year map updated, latitude, and longitude. However, it does not give feature names, such as Pikes Peak. The defaults, such as feet or meters, line thickness, etc. can be adjusted and reset. The help bars can be turned off. *Terrain Navigator* images can be exported as TIFF or Windows Bitmap Format (BMP) files. The program can be used with a GPS unit, but I did not test this function. *Terrain Navigator* comes with 3-D glasses, which is a gimmicky feature. The information icons appear at the top of the screen, but the title/help information for each button appears at the bottom of the screen; this is not intuitive. As opposed to *Topo USA*, *Terrain Navigator* cannot fill the 3-D view to the horizon. This program also allows the user to show a “line of sight” profile; this is a useful tool for working in the field.
Delorme's **Topo USA 3.0** is an improvement on their earlier versions. It is inexpensive and covers the entire country. However, users hoping to find scanned images of the USGS 7.5' topos will be disappointed because this product doesn't contain that information. The product is essentially an extension of Delorme's ever popular **Street Atlas USA**. In fact, the streets are included with this program, but the routing functions have been eliminated. The roads can be seen easily, but like **Street Atlas**, some of the roads are wrong (my neighborhood in particular). Drawing lines is smoother with this program than **Terrain Navigator**, however **Topo USA** becomes clunky if you move off the screen. Because it lacks the 7.5' base, and thus the details of those maps, **Topo USA** is not recommended for extensive backcountry use such as for hiking or hunting. The program allows the user to add horizons (going off into infinity) to 3-D views. However, with this feature on, the program does not quickly or smoothly rotate or tilt. The user is allowed to turn off the contours, which can make the maps easier to read in urban settings. The most unique thing about this program is the automatic routing feature. This allows users to click on one end of a road or trail, click on the other end and the program will mark the route, with all its twists and turns. A profile of the route can be quickly shown. One can also add waypoints. This feature can save a user time and frustration, for rather than draw an inaccurate route by hand, the program does it automatically. The only drawback is that not all trails and roads are in the program. I found this feature useful for finding the length of my hikes, but only if the trail was in the program.

Both are good products. While the level of detail **Terrain Navigator** is excellent, the price tag is a bit much for libraries to swallow. **Topo USA** is recommended as a basic tool for most libraries. It is inexpensive, but it has its limitations.

Christopher J.J. Thiry
Map Librarian
Colorado School of Mines
thiry@mines.edu

This atlas reinforces the relationship between population growth and environmental issues. Increasingly, public awareness via the media confirms such links and the emphasis of this volume affirms that. The volume is divided into three parts. A rather comprehensive introduction to the issues framed by a theoretical overview and implications for social policy becomes a distinctive first part of the background information. The second part contains an outline of several sections that discuss a range of subjects and become the atlas portion. These include natural resources, land use, atmosphere, waste and chemicals, ecosystems and biodiversity. Many clear maps document the range of world distribution, production, consumption and usage of products related to each issue. Footnotes attribute original sources to many international agencies, including the World Bank, UNESCO, FAO, WRI, WTO, UNEP, UNPD and US federal agencies such as the EPA, NOAA and the USGS or conservancy groups such as the World Wildlife Fund or Nature Conservancy. Within each of these sections, the reader or user is exposed to what the effects are of population on global change. Not an easy task that is often successful via other reference works or conference presentations or research studies, but this attempt in clear and understandable language makes for a valuable reference tool. Accompanying many of the maps are tables and graphs that indicate some data and suggest rankings and domination of the world markets. Much of the subject matter is often interpreted in very ambivalent ways, however this volume offers several methods of explanation for some complex issues such as the origin of water, ocean traffic and productivity, climate change and urbanization, to name a few.

The last part is a series of six short case studies that concentrate on important regional issues in areas including the Northern Andes, Canaima National Park, the Dominican Republic, the Eastern Himalayas, Madagascar, and the Sonoran Desert. Each brief study includes several maps and charts that graph the serious issues of each case study or ecosystem that is highlighted. These studies are excellent examples for high school or lower division undergraduate students of how to analyze the myriad ecosystems that abound with similar concerns.

The volume contains a brief subject index and bibliography of related general sources, which include web site addresses and some relevant conversion tables. This book is a very convenient reference work for users from many levels and backgrounds. The focus is on current data, yet there are some tables that include corresponding historical comparisons and data. It is easy to use; the clarity of the tables and maps is commendable. The entire product delivers exactly what it promises in the promotional introduction, "how population factors such as rates of growth, density, movement, resource consumption, and the use of certain technologies affect the world's
ecosystems and natural resources both in the short and long term."

This book is highly recommended for all libraries because it can serve high school and college students, graduate students and researchers alike. Users will find that the volume lends to good copying and most importantly, to a clear understanding of the concepts.

Julia Gelfand
Applied Sciences & Engineering Librarian
University of California, Irvine
jgelfand@uci.edu

Publications Received

Review Guidelines

These guidelines have been created to aid the reviewer on questions of format and general policies for reviews.

Review Format: The review should be presented in three sections: 1) the bibliographic citation, 2) the review, 3) identification of the reviewer. Please submit your reviews via e-mail. Microsoft Word format as an attachment is preferred. You may also send your review on 3.5" floppy disks. Please note, if you send your review through floppy or e-mail, please also send via fax or mail, a backup paper copy for verification of content. Floppies will be returned upon request.

The bibliographic citation should include: Author’s name, title, edition (if applicable), place of publication, publisher, date, number of pages, price, LC number (if known), and ISBN number (if known). An example, including correct punctuation is given below:

Reviews should be double-spaced and follow the usual principles of paragraphing. If reviewed material is compared with other works, please include author’s name, title, publisher and date of publication within the review itself rather than using footnotes. The review should be followed by your name as you wish to be cited, place of employment, including city and state.

Editorial Policies: The opinions and judgements appearing in WAML reviews are those of the author and do not reflect official sanction of WAML. The book review editor retains the right to make alterations in reviews submitted. If minor revisions do not alter the reviewer’s intent, they will be made without further communication. However, if the review editor feels that extensive revisions are needed, or if changes would result in altering the reviewer’s intent, such editing would only be made with the knowledge and agreement of the reviewer.

Review Content: To a certain extent the contents of a work must be described, however the reviewer should avoid making the review a list of the work’s contents. Rather the reviewer should emphasize analysis, evaluation and comparative criticism. Questions, which should be considered in the review process, include: What is the purpose of the work? Has the content as described by the title been fulfilled? Has the author’s intent as described in the work’s preface and/or introductory remarks been realized in its content? How much of the work’s content is cartographic, or is it primarily written text illustrated by a few maps? How important is this work for research in geography and cartography? Should it be included in library collections, and what kind? The length of your review should be determined by the importance of the item being reviewed.

Reviews of books received by indivi-dual libraries that might be of interest to a wider audience are also invited, so long as they follow the review guidelines. Submit reviews to the Review Editor.

Thank you for your attention to these guidelines. Additional reviewers are always welcome. Please feel free to recommend other qualified reviewers who might be interested in submitting reviews to the Information Bulletin.

Katherine L. Rankin
Review Editor
WAML Information Bulletin Catalog Department
University Libraries
University of Nevada, Las Vegas
4505 Maryland Parkway
Box 457034
Las Vegas, Nevada 89154-7034
Tel: (702) 895-2224
Fax: (702) 895-2280
E-mail: krankin@ccmail.nevada.edu
New Mapping of Western North America

compiled by

Ken Rockwell

University of Utah Library Catalog Department

Notice of newly-published maps and cartographic products are welcome, so they can be announced even before they appear in my default source, namely OCLC. However, I'd like to clarify the scope of the list. Given all the map products available, I have to place some limits on myself and the list, so I've routinely excluded the following: city street maps, simply because of their great quantity, regularly-updated, virtually annual editions of various maps, such as US National Park maps, AAA state and California region maps, state highway dept. road maps, Thomas Bros. Street atlases, NIMA/NOAA nautical charts, and USGS topos.

Thus, I concentrate on thematic maps (including cities, such as an earthquake map for San Francisco), and new maps of states and regions by commercial publishers. Examples are geologic maps covering a USGS quadrangle, a state road map from a foreign publisher, and recreation maps. So let me know when you become aware of a new map, being aware, though, that I may already have had it on a previous list and will try to screen those out. — Ken Rockwell, Editor, New Mapping of Western North America.

ALASKA

ALBERTA

ARIZONA

IGage, 2000. All Topo Maps: Arizona, Version 4.2. 6 computer optical discs, original 1:24,000 and 1:250,000. Salt Lake City, Ut: iGage. OCLC: 48374922

BRITISH COLUMBIA

CALIFORNIA

California Division of Mines & Geology, 2001. San Jose East Quadrangle Official Map: Seismic Hazard Zones. 1 map, scale 1:24,000. Sacramento CA: The Division. OCLC: 48386123

Arvada, Colo.: Fish-n-Map Co. OCLC: 48461061

Fish-n-Map Co., 2000. Don Pedro L.; Pardee Lake; New Hogan L. 3 maps on 1 sheet, scales 1:21,600 and 1:24,000. Arvada, Colo.: Fish-n-Map Co. OCLC: 48756117

Fish-n-Map Co., 2000. Lake Hodges; L. Sutherland; Morena Res.; Lower Otay Res. 4 maps on 1 sheet, scales differ. Arvada, Colo.: Fish-n-Map Co. OCLC: 48756121

Fish-n-Map Co., 2000. Lake Success; Lake Kaweah; Santa Margarita & Lopez Lake. 4 maps on 1 sheet, scales differ. Arvada, Colo.: Fish-n-Map Co. OCLC: 48259025

Fish-n-Map Co., 2000. Nacimiento & San Antonio Reservoirs. 2 maps on 1 sheet, scale 1:21,600. Arvada, Colo.: Fish-n-Map Co. OCLC: 48259001

Fish-n-Map Co., 2000. Silverwood L.; Perris L.; Siskiyou L. 3 maps on 1 sheet, scales 1:7,200 and 1:12,000. Arvada, Colo.: Fish-n-Map Co. OCLC: 48756129

Fish-n-Map Co., 2000. Trinity Lake; Whiskeytown Lake. 2 maps on 1 sheet, scales differ. Arvada, Colo.: Fish-n-Map Co. OCLC: 48259020

Gilbreath, Jacque, and Rose, Terry, 2001. California Transmission Lines, Substations and Power Plants Statewide Map: power plants shown are operational only—100KW (1MW) and Greater. Scale ca. 1:1,362,240. Sacramento: California Energy Commission Systems Assessment and Facilities Siting Division, Cartography Unit. OCLC: 48651315

Magellan Geographix, 2000. Santa Barbara County Oil and Gas Facilities. Scale ca. 1:610,000. Santa Barbara, CA: Santa Barbara County Planning and Development Dept., Energy Division. OCLC: 49209291

the maps. Point your Internet browser to http://www.maps.com/Power/California and enter the Key Code at the bottom of each page to access the data.” ISBN: 1930194080 OCLC: 48470564

Geological Survey Open-File report 00-447. OCLC: 48554374

Also, Phil Hoehn informs us of these new maps:

COLORADO

Roberts, Stephen B., 2001 Maps Showing the Extent of Mining, Locations of Mine Shafts, Adits, Air Shafts, and Bedrock Faults, and Thickness of Overburden Above Abandoned Coal Mines in the Boul-

HAWAII

IDAHO

(To order from IGS, see web page at: http://www.idahogeology.org/Products/Howtoorder/default.htm)

MONTANA

IGA, 2000. *All Topo Maps: Montana*, 5th ed. 6 computer optical discs, original 1:24,000 and 1:250,000. Salt Lake City, Utah: iGage. OCLC: 48374963

NEVADA

IGage, 2000. All Topo Maps: Nevada. 6 computer optical discs, original 1:24,000 and 1:250,000. Salt Lake City, Utah: IGage, 7th ed. OCLC: 48374914

OREGON

PACIFIC COAST STATES

UTAH

IGage, 2000. All Topo Maps: Utah, 8th ed. 7 computer optical discs, original 1:24,000 and 1:250,000. Salt Lake City, Utah: IGage. OCLC: 48374947

WYOMING

IGage, 2000. *All Topo Maps: Wyoming,* Version 4.2. 7 computer optical discs, original 1:24,000 and 1:250,000. Salt Lake City, Utah: iGage. OCLC: 48374933

YUKON TERRITORY

WASHINGTON

News of Note

compiled by
Linda Zellmer and Adonna Fleming

Benchmarks

Stanley D. Stevens named Historian of the Year

Stanley D. Stevens, founding President of WAML and an Honorary Life Member of WAML, was honored in November by the History Forum of the Santa Cruz Museum of Art and History as the “Historian of the Year, 2001”.

His current work is an extension of his collection development work during his years as Map Librarian at the University of California-Santa Cruz, 1965-1993, where he is Map Librarian Emeritus. He has created and continues to work everyday as a volunteer Coordinator of the Hihn-Younger Archive at the University Library’s Special Collections, and the UCSC Map Room. For more information on The Hihn-Younger Archive, see its website at: http://libweb.ucsc.edu/hihn.

Linda Zellmer Moves East

After 15 years west of the 100th Meridian, Linda Zellmer, WAML Information Bulletin editor, has relocated to the Midwest. On January 14, 2002, she started as Head of the Geology Library at Indiana University (Bloomington). The position offers the opportunity to continue to work with GIS, and the possibility of sharing her knowledge and experience related to GIS in libraries with others. Her new e-mail address is lzellmer@indiana.edu.

New Harley Fellows

The Trustees of the J.B. Harley Research Fellowships Trust Fund recently announced the ninth series of awards, offering support at a rate of £250 [sterling] per week. The fellowships are designed to assist research in London map collections. Dr. Lisa Davis Allen (University of Texas at Tyler, USA) will spend 2 weeks studying the frontispiece, portrait and color variations in multiple language editions of Ortelius’ Theatrum Orbis Terrarum. Dr. Gretchen E. Gaynor (Independent scholar, United States) will spend 3 weeks studying John Dee’s scientific contribution as a geographer and cartographer. Dr. Giuseppe Ragone (Università degli Studi “Roma Tre”, Dipartimento di Studi sul Mondo Antico, Rome, Italy) will develop a critical edition of and historical commentary on Cristoforo Buondelmonti’s “Liber insularum Archipelagi”: the manuscripts preserved in London collections (3 weeks).

Seventeen submissions were received this time. For details of past awards, numbers of applicants, and extracts from Fellows’ reports, see: http://ihr.sas.ac.uk/maps/harlfwss.html on the Map History gateway site. For information about applying for a Fellowship (closing date November 1) e-mail or write Tony Campbell, Hon. Sec., Harley Fellowships, 76 Ockendon Road, London N1 3NW, UK. Contributed by Tony Campbell, t.campbell@ockendon.clara.co.uk.

Canadian News

Newfoundland Changes Name

On December 6, 2001, Adrienne Clarkson, Governor General of Canada, proclaimed an amendment to the Canadian Constitution which changed the name of the province of Newfoundland to Newfoundland and Labrador. The change is in response to a Newfoundland House of Assembly resolution, adopted April 29, 1999, to change the name of the province. The resolution to authorize issuing a proclamation to amend the Constitution of Canada was adopted by the Canadian House of Commons on October 30, 2001 and the Senate on November 20, 2001.

On January 17, 2002, the Library of Congress approved the new subject heading Newfoundland and Labrador (French equivalent: Terre-Neuve-et-
National Atlas of Canada News

The National Atlas of Canada is evolving. In April 2002 a fully rebuilt Web site will replace the current site. All of the regular resources will still be available, along with some exciting new features, including a new interactive mapping tool. Everything will be easier to access and faster to load in your Web browser. The NAC staff have done a great deal of user testing over the last year; all of the changes made will respond to user needs.

In April, the revised National Atlas of Canada web site (http://atlas.gc.ca) will introduce two new modules. New themes will include Income and Health. Income, a key economic indicator, together with other social, economic and environmental indicators, is used to determine the quality of life and economic well being of a nation, region or community. This first series of income maps, based on the 1996 Census, is intended to present a basic distribution of median income of Canadians, by gender. The accompanying analytical texts, prepared in partnership with experts at Statistics Canada, further describe the subject, specifically in comparing income distributions between gender and rural and urban locations. Future releases of income maps will focus on the distributions of household and family incomes, employment income and low income. The Health module provides a systematic coverage of a number of themes that are illustrative of the interests and concerns of Canadians. The series of 21 maps is organized (structured) using the following categories of health indicators: Health Status, Non-Medical Determinants of Health, Health Behaviours, Health Resources and Health Services Utilization. For more information see http://www-atlas.ccrs.nrcan.gc.ca/projects/atlas/v2/default.asp.

A map of every continent including the World and North Circumpolar Region is now available from the National Atlas of Canada site in the Quick Maps module under Ready Maps/International Maps. The maps have a common look and feel and are available in both raster and PDF versions. See http://atlas.gc.ca/english/quick_maps/index_quickmaps.htm. In addition, all of the national, provincial and territorial maps available in the Ready Maps section of the Quick Maps module of the National Atlas of Canada Web site have been updated to reflect the recent name change of Newfoundland to Newfoundland and Labrador. Contributed by Diane Mann, Diane.Mann@CCRNS.NRCan.gc.ca.

Cataloging News

Rumsey Collection MARC Records

December's checklist of 213 Machine Readable Cataloging (MARC) records maps and other images in the David Rumsey online collection is now available. The checklist gives the Library of Congress Geographic Classification Code, Subject Code, Brief Title, Author and OCLC number. If you would like to receive copies of this and future checklists, please contact Phil Hoehn. They are available either in Excel or HTML format (specify which you would like). These records are available in OCLC and RLIN, as well as in the University of California, Berkeley's Pathfinder Catalog, the University of California's Melvyl Catalog, and the University of California, San Diego's Roger Catalog. All can be retrieved by a corporate name search on David Rumsey Collection. The cataloging is a joint project of the Rumsey Collection and the Earth Sciences and Map Library at UC Berkeley. Contributed by Phil Hoehn, Librarian, David Rumsey Collection, San Francisco, CA, philhoehn@juno.com.

ALA/LC Romanization Tables on the Web

The scanned text of the 1997 edition of the ALA-LC Romanization Tables is now available as PDF files on the Cataloging Policy and Support Office Web site at http://lcweb.loc.gov/catdir/cpso/roman.html. Links to the site can be found under Latest News from CPSO and under Cataloging Tools and Documentation.

Web Access to Special Instructions for Subclass G

The fourth edition (1976) of Class G (Geography. Maps. Anthropology. Recreation) included a section titled Special Instructions and Tables of Subdivisions for Atlases and Maps, which included detailed information on how to construct call numbers and apply the various tables of subdivisions that are used with subclass G when classifying cartographic materials. These instructions were not included in the 2001 edition of Class G, but have now been updated and are available at the following web site: http://lcweb.loc.gov/catdir/cpso/class_g.html. Contributed by Edward James Redmond, ere@loc.gov.
Conferences and Classes

Western Association of Map Libraries. Fall, 2003 Meeting. Santa Cruz, California. Host: Cynthia Jahns.

Western Association of Map Libraries. Spring, 2004 Meeting. To be Arranged.

Maps and Society Programme, 2001-2002. University of London, Warburg Institute, Woburn Square, London WC1H 0AB at 5:00 PM on a Thursday. For a full schedule see the History of Cartography web site (http://www.ihrin info.ac.uk/maps/warburgprog.html) or contact Tony Campbell (tony.campbell@bl.uk).

North American Cartographic Information Society (NACIS). Columbus, Ohio, October 9-12, 2002.

Digital Spatial Data

Crater Lake Digital Data

The US Geological Survey recently released Digital Data Series 72, 2000 Multibeam Sonar Survey of Crater Lake, Oregon: Data, GIS, Images, and Movies, by James V. Gardner and Peter Dartnell. This CD-ROM contains multibeam, high-resolution bathymetry and calibrated, co-registered acoustic backscatter data of Crater Lake, Oregon collected by the U.S. Geological Survey, Pacific Seafloor Mapping Project, in cooperation with the National Park Service, and the Center for Coastal and Ocean Mapping, University of New Hampshire. It uses an HTML based user interface, providing an introduction, an ArcExplorer project, Crater Lake perspective views, a fly-by movie through the lake, a movie of the helicopter transport of the survey vessel into the lake, data, photographs, a list of publications, and links to Crater Lake related websites.

DDS-72 (stock no.: 112490, ISBN: 0607984139) is available for $32.00 plus $5.00 handling from USGS Information Services, Box 25286, Denver, CO 80225 (FAX: 303-202-4693). Contributed by Rea Mueller, rlmueller@usgs.gov.

Global GIS Database for Asia and the South Pacific

The US Geological Survey recently released two additional CD-ROMs in the Global GIS Database series.

DDS-62-C, Global GIS Database: Digital Atlas of South Asia and DDS-62-D, Global GIS Database: Digital Atlas of South Pacific, by P. Hearn, Jr. and others, are part of a global database compiled from USGS and other data sources at a scale of 1:1,000,000. The data is intended to be used as a regional reference and analytical tool by researchers, government officials, the private sector, and the general public. The CD's include free GIS software or may be also be used with ESRI's ArcView software. Customized ArcView tools, specifically designed to make the atlases easier to use, are also included.

The atlases contain data for country political boundaries, digital shaded relief, elevation, slope, hydrology, city and town locations, airfields, roads, railroads, utility lines, population density, geology, ecological regions, historical seismicity, volcanoes, oil and gas fields, ore deposits, climate data, land cover, vegetation index, and lights at night.

DDS-62-C (ISBN: 0607975016; stock number 112341) and DDS-62-D (ISBN: 0607975024; stock number 112342) are both available for $32.00 plus $5.00 shipping and handling per order from USGS Information Services, Box 25286, Denver, CO 80225 (FAX: 303-202-4693). Contributed by Rea Mueller, rlmueller@usgs.gov.

California DRGs

Digital Raster Graphics (DRGs) for California are now available online. Originally produced and distributed by Teale Data Center, these DRG files have been put on a State of California Web site: http://gis.ca.gov/. The DRG Web page is considered experimental and under development. Improvements will be made over time. In addition, California plans to provide DRG data on CD for the cost of reproduction through a contractor in the future.

California DRGs are not in the usual USGS format. They are cast on an Albers projection optimized for California, have a different color palette, and were scanned at 500 dpi. Two sets of statewide DRGs are available for download free of charge: standard and trimmed. Standard DRGs include map collar information. Trimmed DRGs have been clipped to the neat line allowing for easier image mosaicking and edgematching. 1:250,000-scale, 1:100,000-scale, and 1:24,000-scale DRGs are all available. California plans to make UTM versions of the their DRGs available in the future.

The USGS will continue to sell the over 600 California DRG files produced as part of the Border program or made as a result of minor revisions. These files are available through Earth Explorer: http://earthexplorer.usgs.gov. Contributed by Rea Mueller, gs-n-hq_esic_bulletins@usgs.gov.

USGS Partners with MapMart to Serve Geographic Data

The US Geological Survey and MapMart.com have formed a partnership to distribute USGS geographic data, making more public domain data available for free while enabling the private sector to have a greater role in the distribution of USGS data. The USGS Spatial Data Transfer Standard Digital Elevation Models (SDTS DEMs) being distributed by MapMart.com show the topography of the land surface. Private industry, government, NGOs, and citizens depend on a common set of base information, such as DEMs, that describes the Earth's surface. They use this information for land and economic and community development, natural resource management, health & safety services, emergency management, defense, and environmental protection.

SDTS data are part of the National Map—a seamless, continuously
maintained set of geographic base information that will serve as a foundation for integrating, sharing, and using other data easily and consistently. Additional information about USGS SDTS data are available at: http://mcmweb.er.usgs.gov/sdts. The USGS is committed to meeting the Nation’s needs for current base geographic data and maps. By working with partners, the USGS will continue to provide the Nation with access to current, accurate, and nationally consistent digital data and topographic maps derived from those data.

MapMart.com is the latest commercial vendor to partner with the USGS to distribute free SDTS data on the Internet. MapMart is an online resource for the location and acquisition of a variety of digital map data. MapMart’s interface allows users to zoom-in to an area of interest and to determine digital data availability and select quadrangles to be ordered. MapMart also sells numerous digital data products. The ordering of digital data can be done at different map scales, and in numerous mapping software formats. Additional information about MapMart.com is available at: http://www.mapmart.com.

USGS SDTS DEMs will continue to be available for free from GIS Data Depot (http://www.gisdatadepot.com). USGS partners will continue to receive SDTS versions of the DEMs as they are made available by the USGS. Native format DEMs are still available for sale from USGS on various media through Earth Explorer (http://edcns17.cr.usgs.gov/EarthExplorer/).

Soil Data Viewer

The Soil Data Viewer (SDV) is a new tool from the Natural Resources Conservation Service (NRCS) that provides access to soil survey maps and data. SDV has been developed as a companion tool to the USDA’s Customer Service Toolkit (CST), a collection of software tools for USDA employees who work with the public. The purpose of the tools is to help natural resource planners provide information to the public that results in conservation on the land. Software tools incorporate commercial software products that enable conservationists to provide natural resource information in professional looking products. The Toolkit and SDV can be used to map and analyze natural resource information.

SDV can be used with the new SSURGO Version 2 data format, which includes soil data and interpretations generated by NASIS (National Soil Information System). SDV is an easy to use tool for geospatial analysis of soil information for resource assessment and management. An extension to ArcView, it allows the user to easily create tabular reports or soil-based thematic maps and offers several map unit component processing methods. SDV shields the user from soil database complexities and incorporates rules for the appropriate use of soil data. It provides an easy-to-use tool for geospatial analysis of soil information for resource assessment and management by providing access to the soil survey database, and processing and displaying soil data and information through a list of interpretations, soil interpretative groups, and soil physical and chemical properties. It can be used as a stand-alone tool independent of the Customer Service Toolkit and in either GIS or non-GIS mode. Version 3.0 of SDV and an accompanying manual, can be downloaded from http://www.itc.nrcs.usda.gov/soildataviewer/updates.htm. For more information on Soil Data Viewer contact Robert Nielsen, National Soil Survey Center, Natural Resources Conservation Service, Lincoln, Nebraska, (402) 437-4149. Email: bob.nielsen@nssc.nrcs.usda.gov.

General News

Aerial Photo Sleeves

Marilee Ohnstad recently requested information on companies that sell sleeves for aerial photographs. She reported the results of her quest on Maps-L. Picture Pocket (http://www.picturepocket.com) sells 100 archival 3.0 gauge Polypropylene Sheetfilm Sleeves 10" x 10" with two edges sealed for $19.30. E. Gerber (http://www.egeber.com/default.asp) also sells archival film sleeves, however you must order a 10" x 13" 4 mil mylar. The company will cut the 3" excess off. They also sell archival backing boards. Mary Galnder volunteered the following information: to keep aerial photos flat, file the photos back-to-back and front-to-front. Contributed by Marilee Ohnstad, Library Assistant Senior, Brinkerhoff Geology Library, University of Wyoming, ohnstad@uwyo.edu.

ESRI Education User Conference

Educators from around the world will gather in San Diego, California, July 5–7, 2002, for the Second Annual ESRI Education User Conference (EdUC). More than 150 abstracts have been submitted to date. Many of these cover topics in the areas of GIS research, graduate school curriculum, writing lessons and instructional materials, GIS for administration and planning, and integrating GIS with sister technologies. Based on feedback from last year’s conference, they are also planning a hands-on
workshop series that will cover ESRI technology training such as ArcGIS, ArcIMS, ArcView Spatial Analyst, ArcView 3D Analyst, and ArcView Image Analysis.

This year they will also include sessions on academic fields that have not been known for using GIS in their curriculum. They have made an effort to solicit papers in the areas of GIS use in journalism, public health and medical academic programs, and curriculum development for transportation education programs. If you are interested in participating in any of these sessions, please contact ESRI at educ2002@esri.com. Information on the conference is also available at http://www.esri.com/industries/k-12/gisedcon02.html.

British Library Helen Wallis Fellowship

Applications are being accepted for the Helen Wallis Fellowship at the British Library until May 1, 2002. This annual, named fellowship offers a convenient and unusually privileged working environment in the British Library. The fellow will be treated like a staff member (i.e. not restricted to reading room hours) and will be provided with their own work-station, with an e-mail account and Internet access. In addition, up to £300 can be spent on Library services.

The award honors the memory of Dr. Helen Wallis OBE (1967-86) the former Map Librarian at the British Museum and then British Library, and confers recognition by the Library on a scholar, from any field, whose work will promote the extended and complementary use of the British Library’s book and cartographic collections. Preference will be given to proposals that relate to the Library’s collections and have an international dimension. The fellowship may be held as a full or part-time appointment, and would normally be for 6-12 months. To request additional information on the Fellowship, contact Jacky Matheson (jacky.matheson@bl.uk), saying where you saw this notice. Contributed by Jacky Matheson

Internet Resources

Paleoenvironmental Atlas of Beringia

The Paleoenvironmental Atlas of Beringia is a web site that provides historical and geologic information on past climates and environments in Beringia (northwestern North America and northeastern Asia). The atlas is the product of an international collaboration by researchers from the United States, Europe and Russia. The site provides basic data (e.g. the original geologic data from individual sites), summaries, and syntheses of the basic data presented in map and/or time series form. The web site is a living scientific document, and syntheses contained within it are developed from the data archived in the atlas database. It grows as new data and syntheses become available. The site is intended as a resource for the global change scientific community and students who wish to learn more about the history of the Arctic environment. The developers are currently considering additions to the Atlas site, including an outreach section directed toward the general public and section on Beringian fauna and how it records environmental change. Presently, no timeline is available for these additions to the Atlas. Minor additions to the Atlas (e.g. new syntheses and data) can be tracked through the use of the What’s New page. The atlas is available at: http://www.ngdc.noaa.gov/paleo/parcs/atlas/beringia/index.htm.

High Plateaus of Utah Available Online

The Digital Technologies division of Marriott Library, University of Utah, would like to announce the completion of a new digital project, Report on the Geology of the High Plateaus of Utah. In the summers of 1875-77, under the direction of Major John Wesley Powell, Clarence Dutton (1841-1912) of the US Geological Survey, explored, studied and mapped the geology of the high plateaus region of the territory of Utah. The resulting report was published by the US Department of the Interior. The digital version of the book includes page images and searchable text, as well as a number of black and white plates. It can be viewed as part of the University of Utah digital collections at http://www.lib.utah.edu/digital/digcol.html. Contributed by Barbara Cox, barbara.cox@library.utah.edu.

Valuing Antique Maps

Julie Sweetkind-Singer, GIS and Map Librarian at Branner Earth Sciences Library, has developed a web site to help people place a value on old maps and atlases. The site, Historic Atlas and Map Valuation and Conservation, is available at http://www-sul.stanford.edu/depts/branner/mapvaluation.htm. A link to this site has been added to the WAML Map Librarian’s Toolbox. Contributed by Julie Sweetkind-Singer, sweetkind@stanford.edu.

Online Map Citation Guide

Deborah Carter Peoples, librarian liaison for the Ohio Wesleyan University Geography department, a private
four year liberal arts college, has developed an online guide to citing maps. The guide, *Citing Maps*, is available at http://library.owu.edu/citing222.html. It provides information on how to cite a variety of maps, including print, static digital, and interactive digital maps. A link to the site has been added to the WAML Map Librarian’s Toolbox (http://www.waml.org/maptools.html). Contributed by Deborah Carter Peoples, dapeople@owu.edu.

The National Ocean Service's MapFinder Service

For nearly 200 years, the National Ocean Service (NOS) and its predecessors have toiled “on the beaches and in the boats” mapping and describing the physical state of US coastal lands and waters. Traditional products, such as nautical charts and tide tables, have been directed toward ensuring the safe and efficient flow of maritime commerce to and from our Nation’s ports. With the advent of the Internet, NOS is now targeting many of its products toward more widespread public availability and uses.

The NOS MapFinder is a major outreach effort. Its objective is to deliver maps, aerial photographs, and other spatial information to public and private-sector coastal resource managers to assist their planning and management activities. This “one-stop” service offers immediate access to a variety of NOS products on a single World Wide Web site with a map-based interface. This interface allows users to locate a local or regional area of interest; find out what information and products are available for that location; and immediately download specific products. The service will also provide background and explanatory information for each theme so that users can better understand the source, methods, quality, and limitations of specific products. The products are offered by theme (e.g., coastal aerial photography, low resolution nautical charts, coastal survey maps, environmental sensitivity index atlases, hydrographic survey outlines, historical maps, water level station data, geodetic control points, and estuarine bathymetry data). Products are accessed using a spatial inventory that locates and describes all data that NOS possesses for each theme. This allows greater flexibility to identify specific products at regional, state, and local scales. Accompanying each theme are explanatory information and metadata intended to help users better understand specific products, their sources, methods, quality, and usefulness.

The spatial search interface offers simple interactive mapping tools (e.g., pan and zoom, “find within radius”) allows users to locate specific products in any area in the United States and its territories. Users can work simultaneously within any combination of themes. NOS MapFinder produces a detailed report that identifies available products and key descriptive characteristics (e.g., year, catalog number, latitude and longitude of centroid, scale), and provides immediate access to those products that are available online.

NOS MapFinder is comprised of three elements for each of the nine themes:

1) overview material (abstract, detailed description, annotated example of a product, and metadata file in FGDC format)
2) a spatial inventory that locates and describes the comprehensive list of all data collected by NOS for the theme
3) digital products and product previews that can be downloaded for direct use.

The spatial inventories are robust; they contain all, or almost all items in the NOS archives for the period of time that they cover. Three types of digital products are offered. A raster image of a map or a photograph, a text file with data from a specific monitoring station or control point, or Digital Elevation Model files (DEMs). For many uses these digital products will be sufficient. Higher quality digital products (e.g., higher resolution photographs or nautical charts) can be ordered for separate delivery.

Additionally, printed products can be acquired for the cost of reproduction from the NOS archives. Available products include coastal photography, coastal survey maps, environmental sensitivity index (ESI) maps, estuarine bathymetry, geodetic control points, historical maps and charts, hydrographic survey outlines, nautical charts, and water level stations.

MapFinder service is a partnership between eight NOS divisions. It began as a three-year effort (FY 97-99) funded in part by NOAA’s Earth Science Data Information Management program, and supplemented by in-kind contributions from each partner. The partners include the Special Projects Office, Hazardous Materials Response and Assessment Division, Office of Coast Survey’s Development Laboratory, Hydrographic Survey Division and Oceanographic Products and Services Division, and the National Geodetic Survey’s Geodetic Services Division, NGS Remote Sensing Division and NGS Systems Development Division. For more information, see http://mapfinder.nos.noaa.gov/mapfinderHTML3/contacts/contacts.html.
New NASA Global Change Master Directory Available

NASA's Global Change Master Online Directory (GCMD) 2002 provides descriptions of Earth science data sets and services related to global change research. The directory will help students and scientists find data from NASA's Earth science program and other organizations.

The Global Change Master Directory now holds more than 10,600 descriptions of Earth and environmental science data, with information on how to obtain the data and/or direct links to data sources. The individual data set descriptions were contributed by more than 1,300 data centers, government agencies, universities, research institutions and private researchers around the world.

Access to the directory is available through http://globalchange.nasa.gov or http://gcmd.nasa.gov. Selected parts of the directory can be placed on a CD for users without Internet connections. New data set descriptions are added daily, and others are updated on an ongoing basis.

The directory is organized by topics: Agriculture, Atmosphere, Biosphere, Human Dimensions, Hydrosphere, Land Surface, Oceans, Paleoclimate, Radiance/Imagery, Solid Earth, Snow and Ice and Sun-Earth Interactions. There are also listings for Earth science data-related services, Earth science conferences, an actively maintained list of Earth science web resources and an education area called the Learning Center.

Users can click on any topic to explore data sets of interest. For example, to search for data sets on Methane, users would go to the topic, Atmosphere; scan the list under Atmospheric Chemistry, and then click on Methane. All associated data sets then appear in alphabetical order on the left side of the web browser. Clicking on the data set of choice displays a summary of the data set, its content, its geographic coverage, when it was collected and the data center information. Direct links to the data are provided whenever available.

The directory content is shared and available as part of NASA's contribution to the Committee on Earth Observation Satellites' (CEOS) International Directory Network (IDN). The content is also available through the National Spatial Data Infrastructure's (NSDI) Federal Geographic Data Committee's (FDGC) Clearinghouse.

For more information contact: Lola Olsen, Project Manager, Olsen@gcmd.nasa.gov. Contributed by Gene Major, major@gcmd.gsfc.nasa.gov.

Official Yearbook of the United Kingdom

The Official Yearbook of the United Kingdom of Great Britain and Northern Ireland provides an overview of the UK in text, figures, tables, maps, charts and (hardcopy only) colour photographs. Formerly known as the Britain Yearbook, the publication covers the UK and its people, system of government, overseas relations, defense, education, the labour market, social protection, health services, criminal and civil justice, religion, culture, media and communications, sport, environmental protection, planning and housing, transport; the economy, public finance, international trade and investment, science, engineering and technology, agriculture, manufacturing, energy, and finance and other services. The publication is available free on the web at: http://www.statistics.gov.uk/statbase/Product.asp?vlnk=5703&More=N.

Insight Version 3 Java Client available for David Rumsey Map Collection

A new and improved Version 3 of the Insight Java Client is now available for downloading at the David Rumsey Historical Map Collection. Existing users of the Version 2.2 Java Client are encouraged to replace it with the new Version 3 to take advantage of several new features. The new features include drag zooming (a tool to make a box to zoom into), image measurement and scale tools, and the ability to search for multiple values. No user-name or password are required to sign on. Image downloading is allowed at higher resolutions than offered with the Version 2.2 Java Client. The Help files give more detailed descriptions of these and other new features. The Version 3 Java Client can be downloaded at http://www.davidrumsey.com/index2.html or from the http://www.davidrumsey.com. Contributed by Philip Hoehn, philhoehn@juno.com.

Census News and Data Resources

Selected PL94-171 and summary file 1 (SFI) data release is available on the Geography Network (http://www.geographynetwork.com/data/tiger2000). Data can be viewed online or downloaded for use with GIS software. More information about Census 2000 can be obtained from Censusswatch (http://www.censusswatch.com/).

In addition to data files, ESRI has also released an atlas of census maps.
entitled *Mapping Census 2000: The Geography of U.S. Diversity* (ISBN 1-58948-014-7, 120 pages, $19.95). Cartographers Cynthia A. Brewer and Trudy A. Suchan have taken Census 2000 data and assembled an atlas of maps that illustrates the new American diversity in rich and vivid detail. Several aspects make Census 2000 an especially fascinating data resource. The most recent census included new and expanded categories of racial and ethnic identity by which residents could accurately identify themselves. In addition, Census 2000 was the first time that residents were allowed to identify themselves as belonging to multiple ethnic categories, resulting in a new and more accurate portrait of the population. For further information about Mapping Census 2000, visit http://www.esri.com/library/esripress/mapcen.html.

David Rumsey Collection Launches Online Historical Map Viewer

The David Rumsey Collection recently launched a new geographic information system (GIS) browser that allows current spatial data to be integrated and interact with historical maps and other historical information. The browser is available in two versions to accommodate both novice and professional GIS users. Currently, 11 historical maps of the San Francisco Bay Area from 1851 to 1926 can be viewed in conjunction with modern streets, historical and modern political boundaries, LANDSAT imagery, and digital elevation models. The application utilizes Maplicity from Telemorphic, Inc., and ArcIMS from ESRI. The David Rumsey Collection focuses on rare 18th and 19th century North and South American cartographic history materials collected over the past 20 years by Mr. Rumsey. A portion of the collection is viewable online (http://www.davidrumsey.com/).

GIS Bibliography

Thousands of citations for GIS-related journal articles, books, conference proceedings, newspaper articles, and audio-visual materials are available through the ESRI Virtual Campus GIS Bibliography (http://campus.esri.com/library). The GIS Bibliography is a searchable collection of materials contributed by a variety of organizations including the GIS Master Bibliography Project, AAG, NCGIA, URISA, and Salzburg University. Dr. Duane Marble of The Ohio State University began compiling the GIS Bibliography in 1991. The GIS Bibliography has been located at the Virtual Campus since 1999 and is maintained by ESRI’s librarian, Shelly Sommer. As of January 2002, 16,383 references are available.

New Publications

United States Presidential Elections 1789-2000 Map

A new National Atlas Presidential Elections map is now available. The map details the winner of the popular vote by county for the 2000 election. In addition, smaller inset maps show electoral votes by political party and State for all Presidential elections from George Washington in 1789 to George W. Bush in 2000. This new National Atlas map illustrates the evolution of America's political parties and its election laws and procedures. More information about this and other National Atlas maps is available at http://nationalatlas.gov. Comments or questions about the National Atlas maps can be sent to atlasmail@usgs.gov. The map, *Presidential Elections 1789-2000*, stock number 112283, is available for $7.00 plus $5.00 handling from USGS Information Services, Box 25286, Denver, CO 80225. (FAX: 303-202-4693).

Shaded Relief Maps of Utah and Colorado

New shaded relief maps for the states of Colorado and Utah are now available for sale. Produced from the National Elevation Dataset (NED), color and black and white maps of each state were printed at 1:650,000. The NED is a raster product of the USGS, designed to provide seamless national elevation data with a consistent datum, elevation unit, and projection. In assembling the NED, the elevation values were converted to decimal meters and recast in a geographic projection on the 1983 North American Datum. For both maps, the NED 30-meter data were resampled to 90 meters and cast on the Lambert Conformal Conic projection, using standard parallels of 33 N and 45 N. The central meridian used for each state varies; the Colorado map has a central Meridian of 105° 30' W and the Utah map has a central meridian of 111° 30' W. The maps are illuminated from the northwest, with a simulated sun angle 55° above the horizon and a 3x vertical exaggeration.

Colorado Color Shaded Relief (stock no. 112162) and **Colorado Black and White Shaded Relief** (stock no. 112163) and **Utah Color Shaded Relief** (stock no. 112461) and **Utah Black and White Shaded Relief** (stock number 112462) are each available for $7.00 + $5.00 handling per order from USGS Information Services, Box 25286, Denver, CO 80225. (FAX: 303-202-4693). For information on the National Elevation Data set see http://gisdata.usgs.gov/ned. Contributed by Rea Mueller, GS-N-HQ_ESIC_Bulletins@usgs.gov.
New USGS Digital Data Series

The US Geological Survey recently released several new digital data series. Digital Data Series 39, version 1.1, *Volcanoes of the Wrangell Mountains and Cook Inlet Region, Alaska—Selected Photographs* by Christina Neal, Robert McGimsey, and Michael F. Diggles, contains an improved presentation of 97 digital images, representing a small fraction of thousands of photographs taken by Alaska Volcano Observatory scientists, other researchers, and private citizens. The photographs were selected to portray Alaska’s volcanoes, document recent eruptive activity, and illustrate the range of volcanic phenomena observed in Alaska. The disc also contains pdf files of the text and the photographs as well as installers for Adobe Acrobat Reader 5.0 (ADA-508 compliant) for both Windows and Macintosh.

Digital Data Series 69-A, *Petroleum Systems and Assessment of the South Florida Basin* by Richard M. Pollastro and Christopher J. Schenk, is a product of the 2000 USGS national assessment of undiscovered oil and gas in the Florida Peninsula Province. The CD contains GIS coverages that define and outline the geographic boundaries of petroleum systems and assessment units and text that describes the geology and reasoning to support the assessment of undiscovered oil and gas resources in the South Florida Basin, USGS Province 50, for a forecast period of 30 years.

Digital Data Series 70, *Hydrogeological Investigations of Some Historic Mining Areas in the Western Humboldt River Basin, Nevada,* by J. Thomas Nash contains reconnaissance field observations and information about samples of mine dumps, mine drainage waters, and mill tailings collected to characterize the geochemical signature of these materials and to determine their actual or potential contamination of surface or ground waters. Field observations suggest that visible indicators of acidic mine drainage are rare, and field measurements of pH and chemical analyses of several kinds of materials indicate that only a few sites release acid or significant concentrations of metals.

DDS 39, 69-A and 70 are each available for $32.00 plus $5.00 handling from USGS Information Services, Box 25286, Denver, CO 80225 (FAX: 303-202-4693). Contributed by Rea Mueller, GS-N-HQ_ESIC_Bulletins@usgs.gov.

New National Map Fact Sheets

• The National Map, Utah Transportation Pilot Project, new fact sheet 118-01, November 2001

Questions and comments about the National Map fact sheets can be sent to Pat Hytes at phytes@usgs.gov. Contributed by Rea Mueller, GS-N-HQ_ESIC_Bulletins@usgs.gov.

New USGS Posters

Two new USGS posters are now available for sale. *Gila Cliff Dwellings National Monument,* a cooperative effort between the US Geological Survey and National Park Service, explains and illustrates the origin and development of the caves in Cliff Dweller Canyon, New Mexico. *Volcanoes,* a poster that was previously part of the *Volcanoes* teachers packet, was designed to be used with a series of lesson plans for middle school students. The plans are available online at http://www.usgs.gov/education/volcanoes.

The *Gila Cliff Dwellings* poster (stock no. 112312) and *Volcanoes* poster (stock no. 112440) are each available for $7.00 and $5.00 handling. They can be ordered from USGS Information Services, Box 25286, Denver CO 80225 (FAX: 303-202-4693). Contributed by Rea Mueller, GS-N-HQ_ESIC_Bulletins@usgs.gov.

New USGS Fact Sheets

The following fact sheets, which were recently released by the US Geological Survey, are now available.

How to Select and Order NAPP and NHAP Photographs, Fact Sheet 087-01, August 2001.

Cartographic Services Contract, Fact Sheet 078-01, August 2001, stock number 112266.

These fact sheets can also be requested from USGS Information Services, Box 25286, Denver, CO 80225. (FAX: 303-202-4693). Contributed by Rea Mueller, GS-N-HQ_ESIC_Bulletins@usgs.gov.

New USGS Information Products

The USGS has issued a new General Interest Publication, Titled *Birth of the Mountains-The Geologic Story of the Southern Appalachian Mountains* (stock number 112296), it is available free from USGS Information Services, Box 25286, Denver, CO 80225. (FAX: 303-202-4693).

A Changing World, a new video (stock no. 112293) and teacher’s guide (stock no. 112294) was issued in 2001. The set is available from USGS Information Services for $15.00 + $5.00 handling per order. Contributed by Rea Mueller, GS-N-HQ_ESIC_Bulletins@usgs.gov.

Beyond The Golden Gate

Above the water is a rugged shoreline and a few jagged rocks adorned with bird droppings. Below the surface, however, the Gulf of the Farallones, west of the Golden Gate Bridge, encompasses an area of 4,000 square miles of sea floor, marine life and mysterious objects that may be affecting the area’s environment.

In a new publication from the US Geological Survey, *Beyond the Golden Gate*—Oceanography, Geology, Biology, and Environmental Issues in the Gulf of the Farallones, scientists describe in words, photos and graphics the area just west of San Francisco that takes its name from the Spanish description of “small, rocky sea islands.”

The booklet describes the geologic history of the area, and its underwater and land-based and biologic communities. From microscopic phyto-plankton at the base of the marine food chain to the sea gulls and commonalts that paint the rocky Farallon Islands with their dung, the numerous species of flora and fauna that populate the marine sanctuary are described in words and photos.

Another intriguing chapter of the booklet deals with deposits of man-made materials, such as drums of low-level radioactive waste and whole ships that were dumped on the Farallones seafloor in the 1940s and ‘50s, at a time when the deep sea location was thought to be a "safe" place to put the toxic waste. Although the USGS has determined the location of many of these containers, and even has undersea video tape of some of them, the condition of the containers and their contents have not yet been fully determined.

The 78-page booklet and included compact disc, USGS Circular 1198, is available at no charge from the USGS Earth Science Information Center (ESIC) at 345 Middlefield Road in Menlo Park, Calif., or by mail from the USGS Office of Information Services, Box 25286, Denver Federal Center, Denver, CO 80225-0046; or by calling 1-888-275-8747 (ASK-USGS). The publication is also available on the Internet at: http://geopubs.wr.usgs.gov/circular/c1198/.

North Carolina Map Index

A new single sheet map index for North Carolina is now available. The index combines a complete listing of USGS topographic maps for the state with graphics showing the location of the various scale maps. The graphic that shows 7.5’ quadrangles includes an alphanumeric grid for locating the listed maps. The list of 7.5’ maps gives the alphanumeric locator, latitude and longitude, version date and a simplified map reference code for each map listed. NIMA 1:50,000 scale maps shown on the index are not available for sale at this time. The new index supersedes the older index and map list. The North Carolina State Map index (stock no. 75720) is available online from http://mapping.usgs.gov/mac/maplists.html or on request from USGS Information Services, Box 25286, Denver, CO 80225. (FAX: 303-202-4693). Contributed by Rea Mueller, GS-N-HQ_ESIC_Bulletins@usgs.gov.
Periodical Articles

US Federal, State & Local Government News

Earth Observing-1 Satellite Data

From a USGS Press Release: The US Geological Survey and National Aeronautics Space Administration are teaming up in an attempt to extend the useful life of the Earth Observing-1 (EO-1) technology demonstration satellite. The initial operation period for the satellite, launched in November 2000, was successfully completed in November 2001; operations will be extended through February 2002 with funding support provided by NASA. EO-1 operations will continue after that on a month-by-month basis. Barring any technical failure of the satellite, user demand, through pay-as-you-go satellite tasking, will determine the longevity of operations. The USGS EROS Data Center will archive and sell data collected by two of the EO-1 sensors: Hyperion, the first hyperspectral instrument to be flown on a civilian satellite, and Advanced Land Imager (ALI), which provides data similar to Landsat-7 Enhanced Thematic Mapper Plus (ETM+). Data acquired during the first year of operations is considered archived. Collection of new data will be driven by users scheduling Data Acquisition Requests (DARs) to task the instruments through EDC in conjunction with the Flight Operations Team at the Goddard Space Flight Center in Greenbelt, Maryland. Data processed as a result of a DAR will become part of the archive 3 months after the product is distributed to the requestor. Both previously and newly acquired data are considered public domain.

EO-1 data is sold at the cost of satellite operation, data processing, and customer interface costs, with the first-scene acquisition attempt by either sensor costing $2000. Previously captured data can be ordered from the EO-1 archive at $500.00 per scene. A small number of sample scenes will also be available at no cost via electronic retrieval. For information about the EO-1 satellite and sensors visit the NASA Web site at: http://eo1.gsfc.nasa.gov. Information on products, prices, data inquiries, and ordering is available at: http://eo1.usgs.gov. Orders can be submitted through the Web site. Customer assistance with orders and DARs can be re-furred to EDC Customer Service at 605-594-6151. A list of archived products will be available at the Web site soon. Eventually EO-1 data will be orderable through Earth Explorer.

USGS Scientists Launch Earth Shaking Study in the Puget Lowlands

In an effort to understand how future earthquakes will affect the central Puget Sound lowlands, US Geological Survey scientists will begin installing 90 seismographs on January 25, 2002 to measure ground shaking throughout the region. The goal of the study, the fourth phase of a project called Seismic Hazards Investigation in Puget Sound, or SHIPS, is to determine how the Seattle sedimentary basin influences shaking during large earthquakes, such as the Feb. 28, 2001, Nisqually earthquake. Through early May, the recorders will measure the tiny vibrations caused by the small earthquakes that occur almost daily in the Puget Sound area, and from distant large earthquakes. The small amounts of shaking recorded during these earthquakes will give clues to how the area will shake during much larger earthquakes.

The 90 seismographs will be placed on residential and business property throughout the Puget Sound region. Thirty of them will be deployed along the same line as in the 1999 Dry SHIPS study in an effort to confirm shaking patterns seen then. The remaining 60 recorders will be spread out in a grid from Everett to Tacoma. USGS personnel and volunteers will install the seismographs on sites where property owners have donated electricity for the recorders. No underground detonations will be used.

Organizations participating in the study are the USGS, the University of Washington, North Seattle Community College and the NSF funded Incorporated Research Institutions for Seismology (IRIS) that provided the instruments and will archive the data produced. North Seattle Community College is the newest addition to the SHIPS partnership and is looking forward to future collaborations.

Previous phases of SHIPS have provided scientists with a much greater understanding of how the region will react to strong shaking. The first phase, called Wet SHIPS, used marine air guns towed by UW’s RV Thompson oceanographic research vessel and over 300 seismographs in March 1998 to investigate crustal faults and sedimentary basins throughout the Puget Sound Lowland. Dry SHIPS, September 1999, investigated the Seattle basin using explosions detonated in boreholes and over 1,000 seismographs. The third phase in March 2000, Kingdom SHIPS, used the demolition of the Kingdome as a source of seismic waves; 200 recorders deployed by the USGS throughout Seattle recorded data. The 1998 and 1999 experiments showed that the Seattle basin amplifies low-frequency ground shaking but decreases the
shaking at higher frequencies. The Seattle basin is a 50 x 17-mile depression, extending from Edmonds south to Interstate 90, filled with a five-mile-thick sequence of rocks comprised of sand, silt and mud. The basin lies under the Puget Sound Lowland from the Cascade Range to the Olympic Mountains.

The Seattle basin has been the target of several previous studies by USGS and University of Washington scientists because similar sedimentary basins have been known to amplify shaking during earthquakes. Wet SHIPS defined the structure of the Seattle and Tacoma basins, and provided new insight into the geometry of the Seattle fault zone, considered to be the most dangerous fault for Seattle, and also revealed a large geologic structure trending northwest from Tacoma. Although the evidence remains sketchy at this point, there is evidence that this large geologic structure represents an active fault zone capable of producing large magnitude earthquakes. The mapping of this structure, named the Tacoma fault zone, represents the most unexpected and dramatic result of the Wet SHIPS experiment. Scientists had 30 seismographs deployed across the Seattle basin for the Dry SHIPS experiment in 1999 when a magnitude-7.6 earthquake struck Taiwan. They recorded the waves from that earthquake and from magnitude 2.1 and 2.8 earthquakes beneath the Cascade Mountains, even though the shaking was too small to be felt by residents. The scientists also analyzed shaking from the series of underground explosions they detonated during the 4-day Dry SHIPS study.

Analysis of the seismic waves from the Taiwan earthquake, local earthquakes and Dry SHIPS explosions showed that low frequency shaking was eight to 12 times stronger in the Seattle basin than on bedrock in the Olympic Mountains and the Cascade Range. The strongest increase in shaking was for waves that take two to five seconds between the side-to-side motions. Such low-frequency waves could be damaging to 20- to 50-story buildings and other large structures, so engineers must design them to withstand the greater shaking.

Kingdome SHIPS provided an even more detailed look at the variation in ground shaking, made possible by knowing the time and place of the Kingdome demolition in advance. For more information visit the USGS and UW SHIPS web sites at: http://spike.geophys.washington.edu/SEIS/SHIPS/ and http://geohazards.cr.usgs.gov/pacnw/ships/.

Our Earth as Art: A Landsat Perspective

The USGS EROS Data Center (EDC) has created an exhibit of Landsat 7 scenes that is currently hanging in the Art Hallway at USGS headquarters, Reston, Virginia. Forty-one images, from an archive of more than 200,000 US images collected since April of 1999, were selected for their aesthetic value rather than their scientific information. Special processing and spectral bands were used to “create” a different perspective of Planet Earth. The exhibit has also been displayed at the Sioux Falls Washington Pavilion Visual Arts Center.

Because of the great interest generated by this exhibit, EDC will be offering copies of the images for sale to the public for the duration of the exhibit. A list of the images is available at: http://edcwww.cr.usgs.gov/17dhfias_folder/artscenecatalog.pdf. Each image measures approximately 26” x 27”. They are printed on a light jet printer; a brief description of each scene is included. The price for each scene is $30.00 plus $5.00 handling per order.

DORRAN ordering instructions:
Priority Code: 9 (2-4 week delivery)
Product Code: P359
Inventory: N
Ordering ID: The image name, for example: Lena Delta.
Producing Lab: DD
Price Instr: SPEC. Type in the unit price of $30.00.
No special instructions are necessary.

Customers can call EDC Customer Services at 605-594-6151 for more information or to order the images. Contributed by Rea Mueller, GS-NH_Q_Esic_Bulletins@usgs.gov.

Census 2000 Update

Data from Summary File 2 (SF 2), which contains 47 detailed tables focusing on age, sex, households, families, and occupied housing units for the total population are now in the process of being released. SF2 contains 100 percent data compiled from questions asked of every person and about every housing unit. Population items include age, sex, race, ethnicity (Hispanic or Latino origin), household size and relationship and group quarters information. Housing items include vacancy status (whether the housing unit is vacant or occupied), and tenure (whether a housing unit is owner- or renter-occupied). The data are presented in 36 population tables and 11 housing tables. Each table is repeated for up to 249 racial and ethnic population groups provided they meet a population threshold of 100 people in that geographic area. If there are fewer than 100 people of a specified population group in a specific geographic area, no tables...
will be shown for that group in that area. An additional iteration includes the total population. For a complete list of the 249 population groups, see Appendix H of the SF 2 Technical Documentation (http://www.census.gov/prod/cen2000/doc/sf2.pdf). Data and technical documentation can be downloaded from http://www.census.gov/Press-Release/www/2001/ sumfile2.html.

The Geography Division has recently developed a 1-page guide, titled Online Cartographic & Geographic Resources which maps out the links to Census Bureau sites with a geographic content. The page also provides URLs for each site. The guide is available at http://www.census.gov/geo/www/tiger/webchart.pdf.

National Flood Insurance Program 2001 Year In Review

Under the new leadership of FEMA Director Joe M. Allbaugh, the Federal Insurance Administration and the Mitigation Directorate merged to form the Federal Insurance and Mitigation Administration (FIMA), reuniting the insurance, floodplain management and flood mapping components of the National Flood Insurance Program (NFIP) to ensure fuller coordination of program initiatives and messages.

“The NFIP is central to FEMA’s mission of reducing the impact of natural disasters,” Allbaugh said. “Pre-disaster, community-based mitigation is the key to minimizing property and economic damage and loss of life, and insurance is the best protection against the financial risks. No amount of federal assistance after a flood disaster can match the speed and thoroughness of flood insurance. Flood insurance is effective, fair, and promotes accountability,” he said.

Federally backed flood insurance is now available in more than 19,700 communities that have adopted floodplain management ordinances designed to reduce future flood losses by regulating new construction. This year, the number of policies in force increased to more than 4.3 million, representing nearly $589 billion worth of coverage. (Color maps with state-by-state policy, coverage and claims figures are on FEMA’s website at http://www.fema.gov/nfip/pesstat.htm). Some significant NFIP developments in 2001 include map modernization, developing partnerships with communities, states and/or regional agencies, setting up an online flood map store, organizing the National Flood Conference last May, a public awareness campaign called Cover America II, training insurance agents and lenders and developing rule changes. Proposed rule changes appeared in the Federal Register in December.

New FGDC Standards

The Federal Geographic Data Committee recently endorsed two new standards. They are the Geospatial Positioning Accuracy Standards, Part 4: Architecture, Engineering, Construction, and Facilities Management (FGDC-STD-007.4-2002) and Standard for a United States National Grid (FGDC-STD-011-2001). The Geospatial Positioning Accuracy Standards define accuracy criteria, accuracy testing methodology, and accuracy reporting criteria for object features depicted on Architectural, Engineering and Construction spatial data products and related control surveys. It references established voluntary standards that may be used for some smaller-scale A/E/C mapping applications. Appendix A contains general guidance for specifying accuracy criteria for selected types of A/E/C features or control surveys. Using the standards and guidance contained in this section, end users of A/E/C products (e.g., planners, designers, constructors) can specify surveying and mapping accuracy requirements needed for their projects or specific CADD/GIS layers, levels, or entities. From these specifications, data producers (e.g., surveyors, mappers, photogrammetrists) can determine the instrumentation, procedures, and quality control processes required to obtain and verify the defined accuracies.

The objective of the Standard for a US National Grid is to create a more favorable environment for developing location-based services within the United States and to increase the interoperability of location services appliances with printed map products by establishing a nationally consistent grid reference system as the preferred grid for National Spatial Data Infrastructure (NSDI) applications. The US National Grid is based on universally defined coordinate and grid systems and can, therefore, be easily extended for use world-wide as a universal grid reference system.

This standard defines a preferred US National Grid (USNG) for mapping applications at scales of approximately 1:1,000,000 and larger. It defines how to present Universal Transverse Mercator (UTM) coordinates at various levels of precision, specifies use of those coordinates with the grid system defined by the Military Grid Reference System (MGRS). Additionally, it addresses specific presentation issues such as grid spacing. The UTM coordinate representation, the MGRS grid, and the specific grid presentation requirements together define the USNG. This standard is a process standard as defined by the Federal Geographic Data Committee (FGDC) Standards Reference Model. Specifically, it is a presentation process.
standard. For more information on the FGDC and its activities, see their web site at: http://www.fgdc.gov.

Library of Congress Launches Online International Project

The Library of Congress has launched a new online international project called *Portals to the World*, a guide to Internet resources dealing with the countries and regions of the world. "Portals to the World serves as a kind of one-stop shopping for reliable international information," said Carolyn T. Brown, Assistant Librarian for Library Services and Acting Director, Area Studies Collections. "We expect that it will become one of the very first places that librarians, researchers, and the general public turn to for information about the nations of the World."

Portals to the World (http://www.loc.gov/rr/international/portals.html) offers links to selective and authoritative electronic resources, arranged by country or geographic region, with links for each, sorted in a wide range of broad categories. Each country portal is designed to be comprehensive, yet selective, and to cover topics of interest to specialists and the general public alike. Typical categories are business, commerce, economy, culture, education, government, politics, law, history, libraries, and archives, with some categories tailored to subjects of particular importance for the study of individual nations. In some cases, search engines local to that nation or language have also been included as have links to worldwide organizations, such as the World Bank and UNESCO.

To date, links to electronic resources for 41 countries are available, including Afghanistan, Pakistan and other Central Asian nations. When the project is completed in 2003, there will be a portal page for every nation of the World. The project was designed by area specialists, librarians, and Web masters in the Area Studies Directorate of the Library of Congress. The links are selected by staff familiar with Internet resources for the individual countries. The standards for selecting sites resemble the same high standards the Library uses in acquiring print materials, with preference given to noncommercial sites, primarily those generated by organizations that can reasonably be expected to maintain them over a period of time. Selected sites are predominantly in English, reflecting the first language of the Library's primary user group, but access to non-English sites is expected to increase.

With more than half of the Library's book and serials collections in languages other than English, the Library of Congress is a major international research resource. Its collection of more than 120 million items includes materials in more than 460 languages in all subjects, excluding agriculture and clinical medicine. The Library secures its international materials through a network of dealers and representatives throughout the world. The Library maintains six overseas offices located in Cairo, New Delhi, Islamabad, Jakarta, Nairobi, and Rio De Janeiro in order to acquire materials from regions where the book trade is underdeveloped.

Access to the Library's international collections varies by language and type of material. The Library's reading rooms for Africa and the Middle East, Asia, Europe, and the Hispanic world, as well as 17 other reading rooms, are the primary gateways to these resources. In addition to visiting the Library's reading rooms in person or on the Internet (http://www.loc.gov/rr) and the new Portals to the World Web site, access to portions of the Library's international resources is available on the International home page (http://www.loc.gov/rr/international), and the International Horizons home page featuring digital collections from around the world (http://www.loc.gov/international).

Know the Earth...Show the Way

The National Imagery and Mapping Agency recently released its first Statement of Strategic Intent. The new document replaces and supersedes the Agency's former Strategic Plan. The document focuses on NIMA's mission to provide timely, relevant, and accurate Geospatial Intelligence in support of national security. The hallmark theme is transformation. Specifics of the transformation are outlined in ten strategic goals that constitute the major tenets of the Agency's vision. All of the goals contribute to the Agency's most basic function - satisfying customers' needs. The Statement of Strategic Intent also includes information about NIMA's core values. These include a commitment to its customers, its people and their development, its diverse culture, and to excellence in all it does. A copy of the statement can be viewed at http://164.214.2.59/general/strategicintent.pdf.

University of Arizona Library Awarded IMLS Grant

Tucson, AZ. Thanks to a grant from the federal Institute of Museum and Library Services (IMLS) the University of Arizona Library has received $123,672 for a two-year digitization project that will create the Arizona Electronic Atlas. This dynamic Web-
based interactive state atlas will be accessible to all levels of users. The project will develop a model workflow and methodology that other organizations can use to develop their own Web-based atlases and other products using Geographic Information Systems (GIS) technologies. The project will broaden the collaboration between the State’s libraries and other State governmental agencies. The University of Arizona was one of 47 applicants; 18 awards were made. The Institute of Museum and Library Services is an independent Federal agency that fosters leadership, innovation, and a lifetime of learning. The University of Arizona Library’s Arizona Electronic Atlas was selected because it will have far-reaching impact and serves as a model for other projects.

Dean of Libraries and Center for Creative Photography says, “Departments as disparate as Women’s Studies, the Humanities Program, and the College of Agriculture have expressed a desire for easier access to geographic maps and data. This important project will creatively address this need. Particularly exciting is the opportunity to work with our partners and to create a model that will allow other organizations to proactively and effectively use Geographic Information Systems (GIS) technologies.”

“Libraries provide online education resources of unrivaled quality, validity, and utility,” remarked Robert S. Martin, newly appointed Director of IMLS. “The grants IMLS makes today will provide citizens with information they need in their daily lives, give scholars unprecedented access to historical documents, and enrich the materials available to teachers for use in the classroom.” Contributed by Chris Kollen, kollen@u.library.arizona.edu.

Los Angeles & Ventura County Seismic Hazard Zone Maps

Areas on either side of the Ventura-Los Angeles county line could be susceptible to landslides or liquefaction in the event of a strong earthquake, according to five new Seismic Hazard Zone maps released today by the California Department of Conservation. The maps show areas at risk from ground failure due to landsliding or liquefaction triggered by shaking. The dangerous effects of these secondary hazards exist when there are poor soil or rock conditions present in the subsurface. The recently issued maps cover the Camarillo, Newbury Park, Triunfo Pass, Point Mugu and Point Dume quadrangles.

City planning and building officials use the maps to identify areas that require site-specific geologic or soil investigations before new development is permitted. Generally, it is more cost effective to build improvements into new structures than to retrofit existing ones. Design changes on new development and large remodeling or restoration jobs can reduce the impact of seismic hazards and better protect life and property in future earthquakes.

The official release of these maps follows a six-month public review; new building permits issued inside the zones will require a geologic study to determine whether the hazard exists on a particular site. If a hazard is found, measures to lessen the impact must be proposed. All property sold in California requires that a natural hazards disclosure form be provided to the buyer prior to sale. DOC/California Geological Survey geologists use computer models as well as analyses of existing geological mapping and engineering borings to produce the maps, which are drawn on a scale of 1:24,000.

The Department of Conservation has mapped more than 3,500 square miles in California, including most of Los Angeles, Ventura and Orange counties, and has provided this hazard information to more than 135 cities for their use in planning and issuing construction permits. Mapping in Southern California is ongoing in Ventura County and is planned for the Lancaster and Palmdale areas of Los Angeles County. Color maps can be purchased through DOC’s California Geological Survey at (213) 239-0878. The maps in .pdf format can also be found on DOC’s web site (http://www.conservation.ca.gov/dmg/shezp).

CDMG News Briefs

Two brief news items appear on the CDMG web site. On January 16, 2002, Director Darryl Young announced that the California Division of Mines and Geology would now be officially known as the California Geological Survey. Another item concerns *California Geology*. Because of California’s budget situation and printing costs, publication of *California Geology* has been suspended; the last printed issue was November/December 2001. The California Geological Survey is considering the possibility of an online publication. They are now conducting an interest survey. For more information see: http://www.consrv.ca.gov/dmg/pubs/cg/surv_intro.htm.

INSIDE Idaho ArcIMS Map Service

INSIDE Idaho has recently added ArcIMS mapping services to their Interactive Mapping page at http://inside.uidaho.edu/interactive/mapping.htm. Most of the work was designed and completed by Bruce
Godfrey, GIS analyst, and consultant Fred Gifford of Maxim Technologies. To use, the site Web browsers should be set at a screen area size of 1024 x 768; an 800 x 600 version will be available in the future. The site is best viewed in Internet Explorer but will work in Netscape.

The first application allows users to view Idaho 1:250,000, 1:100,000, and 1:24,000 USGS Digital Raster Graphics (DRG) as seamless, edge matched layers. The 3 seamless, edge matched, statewide raster layers turn on and off depending on the users current scale. DRGs are identical to USGS topographic maps, but users can zoom in, out, pan seamlessly and identify features and print the maps the way you want them. The second feature displays general features of Idaho over a shaded relief base. General features include counties and major roads, rivers, and cities. Color and grayscale shaded relief images available.

Both ArcIMS applications are accessing data stored in SQL Server via ArcSDE. The 1:24,000-scale DRG layer exceeds 5 GB but has performed well in testing. INSIDE Idaho is interested to see how well the site performs for users. If it performs well, they anticipate making additional, larger raster data available this way. Contact Lily Wai or Bruce Godfrey at godf0084@uidaho.edu with comments or questions. Contributed by Lily Wai, lwei@uidaho.edu.

New Map of La Grande area, Oregon

A new geologic map covering 1,680 square miles (4,350 square kilometers) of four counties in eastern Oregon has been released by the Oregon Department of Geology and Mineral Industries (DOGAMI). Highlights include a geologic history of the area that contains some of Oregon’s oldest rocks. Water and mineral resources, geothermal energy, fossil fuels and locations with semi-precious gemstones are included in the map. Natural hazards shown include faults and landslides. Maps are being released on CD-ROM and contain printable full-size color map (36” x 60”) in PDF form, a 54-page report, 2-page summary, and GIS data. A PDF viewer (Adobe Acrobat Reader) is required to open and view the maps and reports. RMS-1, Reconnaissance Geologic Map of the La Grande 30’ x 60’ Quadrangle, Baker, Grant, Umatilla, and Union Counties, Oregon by Mark L. Ferns and Ian P. Madin, Oregon Department of Geology & Mineral Industries, and William H. Taubeneck, Professor Emeritus, University of Oregon is available for $10 from the DOGAMI Baker City Field Office at 1510 Campbell St., Baker City, OR 97814 - Phone: (541) 523-3133 - FAX: (541) 523-5992.

Utah Geological Survey Maps Online

The Utah Geological Survey has recently launched a web-based mapping site. It contains maps showing geology, geologic hazards, natural resources and ground water for various areas of Utah. Index maps provide links to thematic maps for various areas of the state. Maps are presented as .pdf documents of varying size and can be viewed live or downloaded for later viewing and printing. The site is available at http://www.ugs.state.ut.us/maps/index.htm.

Washington State Geologic and Geophysical Map Index

Connie Manson, at the Washington Division of Geology and Earth Resources, has recently mounted several bibliographies as .pdf files on the WDGER web site. The Index to Geologic and Geophysical Mapping of Washington (http://www.wa.gov/dnr/htdocs/ger/mapindex.htm) Part I contains maps that were published or released as Open-File Reports between 1899 to 2001. Part II contains references to maps published in theses between 1901 to 2001. She is also producing county bibliographies, which are also being published as .pdf files on the WDGER web site (http://www.wa.gov/dnr/htdocs/ger/cobib.htm). For more information contact: Connie Manson, (connie.manson@wadnr.gov).

Employment

Associate Director, University of Virginia Geospatial and Statistical Data Center. Closing date March 11, 2001 or until filled. For more information see: http://staff.lib.virginia.edu/HR/faculty.html#associatedirgeostat.

Map/GIS Librarian, University of Tennessee. Assistant or Associate Professor. Salary: Assistant Professor minimum: $35,000, Associate Professor minimum: $42,000. Available: May 15, 2002. For more information see: http://toltec.lib.utk.edu/~lss/search/maplib.html.

Western Association of Map Libraries
Microform Publications

Occasional Papers

Information Bulletin

Microform Sets

First editions only. 1037 fiche. $300.00

Maps and Charts of North America and the Caribbean, 1750-1789. Phase I, Titles 3-1551. 335 fiche $110.00

Maps and Charts of North America and the Caribbean 1750-1789. Phase II, Titles 156-271. 380 fiche $125.00

[Poland] Wojskowy Instytut Geograficzny. 1:100,000. 193-. 53 fiche $500.00

Reichsamt fur Landesaufnahme. *Karte des Deutschen Reiches.* [Germany]. 1:100,000. Berlin, 1867-1947. 4,100 fiche $1,500.00

Cassini & Carte de France, French Revolutionary Era Surveys. 214 fiche Out of Print

U.S. Navy Nautical Charts of Melanesia. 1917-1975. 251 fiche $100.00

Pacific Basin Map Exhibit of the Library of Congress. 83 fiche $30.00

Bernice Bishop Museum Air Photos of Melanesia. ca. 64,000 photos on 70 reels of 35mm film $35/roll

USGS GNIS Gazetteers:

California (17 fiche) ISBN 0-939112-21-3 $10.00

Nevada (5 fiche). ISBN 0-939112-22-1 $5.00

Send Check (payable to WAML) or Purchase Order to: Western Association of Map Libraries
c/o Richard E. Soares
P.O. Box 3989
Chico, CA 95927-3989
Phone: (530) 898-6882
FAX: (240) 250-5514
wamlsoares@hotmail.com
<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Authors/Editors</th>
<th>Location/ISBN</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1973</td>
<td>Catalogue of Sanborn Atlases at California State University, Northridge</td>
<td>Gary W. Rees and Mary Hoehler</td>
<td>OP1. LC#73-5773 ISBN-0-939112-01-9</td>
<td>$4.00</td>
</tr>
<tr>
<td></td>
<td>United States and Canada, vol. 2, Montana to Wyoming; Canada and Mexico</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>with a Supplement and Corrigenda to Volume I, by R. Philip Hoehn.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Baedeker, Muirhead-Blue Guides, Murray, I.J.G.R., etc., Plus Selected</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other Works to Provide Worldwide Coverage of over 2,000 Plans to over 1,200 Communities, Found in 74 Guidebooks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Baedeker, Murray, Joanne, Black, Appleton, Meyer, Plus Selected Other Works to Provide Coverage of over 1,800 Plans to Nearly 600 Communities, Found in 164 Guidebooks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1981</td>
<td>Printed Maps of Utah to 1900; An Annotated Cartobibliography by Riley Moore Moffat.</td>
<td>OP8. LC#81-1459 ISBN-0-939112-09-4</td>
<td>$10.00</td>
<td></td>
</tr>
<tr>
<td>1986</td>
<td>Map Index to Topographic Quadrangles of the United States, 1882-1940 by Riley Moore Moffat.</td>
<td>OP10. LC#84-21984 ISBN-0-939112-12-4</td>
<td>$40.00</td>
<td></td>
</tr>
</tbody>
</table>

Send Check (payable to WAML) or Purchase Order to:

Western Association of Map Libraries
Rich Soares
P.O. Box 3989
Chico, CA 95927-3989
Phone: (530) 898-6882
FAX: (240) 250-5514
wamlsoares@hotmail.com